KDD 2022 | 量化交易相关论文(附论文链接)

97e11a5b577d65d4a8a361652d040a98.png

写在前面

ACM SIGKDD国际会议(简称 KDD)是由ACM的数据挖掘及知识发现专委会主办的数据挖掘研究领域的顶级年会,属于CCF A类会议。第28届KDD会议于2022于8月14日至18日在美国华盛顿举行。KDD 会议包含 Research 和 Applied Data Science 两个 track。目前,KDD 2022 论文接收结果已正式公布。据了解,KDD 2022 Research track 共收到 1695 篇投稿,其中 254 篇被接收,接收率为 14.9%。此外,KDD 2022 Applied Data Science track 共收到 753 篇投稿,其中 195 篇被接收。整体统计来看,KDD 2022 的总体接收率为 18.3%(2448 篇投稿,449 篇接收)。本文介绍了KDD 2022中收录的几篇量化交易相关的论文。

11c843948fbbc920b89ddf5a06bc239c.png

论文标题:

State Dependent Parallel Neural Hawkes Process for Limit Order
Book Event Stream Prediction and Simulation

作者单位:

布里斯托大学

论文链接:

https://dl.acm.org/doi/pdf/10.1145/3534678.3539462

研究内容:

金融市场上的大部分交易是通过限价订单簿(Limit Order Book, LOB)执行的。LOB是一个基于事件的持续更新系统,记录了金融资产的同期需求("买入"对应bid)和供应("卖出"对应ask)。继最近的文献中,成功地将随机点过程与神经网络结合起来为事件流模式建模之后,作者提出了一个新的依赖状态的平行神经霍克斯过程来预测LOB事件,并模拟现实的LOB数据。该模型的特点是 (1)通过连续时间LSTM单元的并行结构,对每种事件类型进行单独的强度率建模;(2)事件状态的交互机制,提高了预测的准确性,并能对事件状态流进行有效采样。首先证明了所提出的模型比传统的随机或深度学习模型在预测真实世界LOB数据集的事件类型和时间方面的优越性。通过使用训练好的模型进行随机点取样,作者开发了一个实际的基于深度学习的LOB模拟器,展示了在真实的LOB数据中发现的多种风格。

d687db6637f24445fcaf50421fc7a1e4.png

模型框架

论文标题:

Company-as-Tribe: Company Financial Risk Assessment on Tribe-Style Graph with Hierarchical Graph Neural Networks

作者单位:

中国科学院大学

论文链接:

https://dl.acm.org/doi/pdf/10.1145/3534678.3539129

研究内容:

公司财务风险无处不在,对上市公司进行早期风险评估可以避免相当大的损失。传统的方法主要集中在公司的财务报表上,而这其中缺乏公司之间的复杂关系的考量。然而,财务报表往往是有偏差和滞后的,因此很难准确和及时地识别风险。为了应对这些挑战,这篇文章将问题重新定义为一种Tribe-Style(群体式)图上的公司财务风险评估,将每个上市公司及其股东作为一个Tribe,并利用财务新闻来建立Tribe间的联系。这种Tribe图呈现出不同的模式,以区分风险公司和正常公司。然而,Tribe式图中的大多数节点缺乏属性,使得它很难直接采用现有的图学习方法(如图神经网络)。对此,本文提出了一种新型的层次图神经网络(Hierarchical Graph Neural Network, TH-GNN),通过两个层次来处理Tribe式图,第一层次用对比学习法对Tribe的结构模式进行编码,第二层次根据Tribe间的关系来扩散信息,实现有效和高效的风险评估。在真实世界的公司数据集上进行的大量实验表明,提出的方法在金融风险评估上比以前的对比方法有明显的改进。同时,广泛的消融研究和可视化也全面展示了提出方法的有效性。

bc76c725e6d04ed55c2aa56064b8a81d.png

模型框架

论文标题:

AntiBenford Subgraphs: Unsupervised Anomaly Detection in Financial Network

作者单位:

波士顿大学

论文链接:

https://dl.acm.org/doi/pdf/10.1145/3534678.3539100

研究内容:

这篇文章作者提出了AntiBenford子图框架,该框架建立在成熟的统计学原理之上。此外,作者还设计了一种高效的算法,可以在真实数据上以接近线性的时间找到AntiBenford子图。文中在真实和合成数据上对提出的框架进行了评估,并与各种对比方法进行了对比。通过经验表明,提出的框架能够检测出加密货币交易网络中的异常子图,而最先进的基于图的异常检测方法却无法检测到这些异常子图。实证研究结果表明,提出的AntiBenford框架能够挖掘异常子图,并对金融交易数据提供新的见解。

23a7c60eed4393f583ec4c8ac56df945.png

模型框架

1c1cc867b86588a13dd763fe8e9f65c0.png

《人工智能量化实验室》知识星球

1b2e5a0cee2a52b1b0bf89be057a09f4.png

加入人工智能量化实验室知识星球,您可以获得:(1)定期推送最新人工智能量化应用相关的研究成果,包括高水平期刊论文以及券商优质金融工程研究报告,便于您随时随地了解最新前沿知识;(2)公众号历史文章Python项目完整源码;(3)优质Python、机器学习、量化交易相关电子书PDF;(4)优质量化交易资料、项目代码分享;(5)跟星友一起交流,结交志同道合朋友。(6)向博主发起提问,答疑解惑。

f091146b40a40972379d344550d2838c.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值