目标检测学习笔记(One-stage和Two-stage)

注:本博客作为学习内容汇总,如有问题,请联系作者修改!

目标检测

1. 基本概念

1.1 什么是目标检测?

目标检测(Object Detection)的任务是找出图像中所有感兴趣的目标(物体),确定它们的类别和位置,是计算机视觉领域的核心问题之一。由于各类物体有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具有挑战性的问题。

计算机视觉中关于图像识别有四大类任务

分类-Classification:解决“是什么?”的问题,即给定一张图片或一段视频判断里面包含什么类别的目标。

定位-Location:解决“在哪里?”的问题,即定位出这个目标的的位置。

检测-Detection:解决“是什么?在哪里?”的问题,即定位出这个目标的的位置并且知道目标物是什么。

分割-Segmentation:分为实例的分割(Instance-level)和场景分割(Scene-level),解决“每一个像素属于哪个目标物或场景”的问题。

在这里插入图片描述

1.2 目标检测要解决的核心问题?

除了图像分类之外,目标检测要解决的核心问题是:

1.目标可能出现在图像的任何位置。

2.目标有各种不同的大小。

3.目标可能有各种不同的形状。

1.3 目标检测算法分类?

基于深度学习的目标检测算法主要分为两类:

1.Two stage目标检测算法(分类+回归)

​ 先进行区域生成(region proposal,RP)(一个有可能包含待检物体的预选框),再通过卷积神经网络进行样本分类。

​ 任务:特征提取—>生成RP—>分类/定位回归。

​ 常见的two stage目标检测算法有:R-CNN、SPP-Net、Fast R-CNN、Faster R-CNN和R-FCN等。

2.One stage目标检测算法(回归)

​ 不用RP,直接在网络中提取特征来预测物体分类和位置。

​ 任务:特征提取—>分类/定位回归。

​ 常见的one stage目标检测算法有:OverFeat、YOLOv1、YOLOv2、YOLOv3、SSD、RetinaNet、YOLOv4、YOLOv5和YOLOX等。

2. 两步法:Two stage

两步法,简单地说:

第一步通过先获取候选区域(region proposals)
第二步:对候选区域进行结果分类和调整候选框位置。

优点:主要是检测的精度较一步法高。

缺点:实时性较一步法差。

详细讲解:
学习链接https://blog.csdn.net/frighting_ing/article/details/121218787?spm=1001.2014.3001.5501

3. 一步法:One stage

将检测问题当成完全的回归处理,直接从网络中提取特征来预测物体的分类和位置。

优点:可以满足实时性要求,实用性较高
缺点:精度相比两步法较差,但效果也相对不错

重点学习:Yolo系列,SSD系列

Yolov系列学习链接:
学习链接1
学习链接2

SSD系列
学习链接1
学习链接2

总结

我学习的过程中会不断更新该系列,将一些优质的博客整理到此,帮助大家更好的学习,也督促自己学习!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Fighting_1997

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值