使用Pytorch实现学习率衰减/降低(learning rate decay)

本文探讨了在深度学习中如何解决学习率选取的问题,重点介绍了Pytorch中两种常用的学习率衰减策略:ReducLROnPlateau和StepLR。ReducLROnPlateau根据监控量停止改善时调整学习率,而StepLR则按固定步长定期降低学习率。两者使用时需注意更新学习率的方式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在实验过程中我们可能都对learning rate的选取而苦脑过
  • learning rate过小:loss降低过慢
  • learning rate过大:loss可能达不到最优,而可能在最优值范围震动

其比较如下图所示
在这里插入图片描述

解决办法

1. 使用ReducLROnPlateau

1.1 介绍

该类是torch.optim.lr_scheduler.ReduceLROnPlateau()
使用方法如下:

class torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.1, patience=0,
 verbose=False, threshold=0.0001
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值