在实验过程中我们可能都对learning rate的选取而苦脑过
- learning rate过小:loss降低过慢
- learning rate过大:loss可能达不到最优,而可能在最优值范围震动
其比较如下图所示
解决办法
1. 使用ReducLROnPlateau
1.1 介绍
该类是torch.optim.lr_scheduler.ReduceLROnPlateau()
使用方法如下:
class torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.1, patience=0,
verbose=False, threshold=0.0001