近期国产开源大模型deepseek为AI领域打响了2025年的第一炮,deepseek v3/R1不仅具有和国外顶尖闭源大模型比肩的实力,而且训练成本也较国外顶尖大模型低的多。如此强大的大模型在2025年初开源,必将加速整个AI领域的发展。那么如何让如此强大的大模型为己所用,成为自己本地的AI助手呢?下面本文将介绍deepseek R1本地部署的详细教程以及避坑指南。
通常大模型对硬件的要求很高,普通的个人电脑没有GPU的话无法在本地部署大模型。但是本次与deepseek r1一起开源的还有其多个蒸馏版本模型,其中亲测1.5b/7b版本可以仅在CPU上运行(7b版本在CPU机器运行较慢)。
本方法是基于LLM Studio做本地部署的,虽然LLM Studio声称安全可靠,但是其一直未开源。故为了保证本地部署后的数据安全,需要在下载好大模型后对LLM Studio进行出入站限制,使其不能联网,以达到完全本地化,且不用担心数据泄露的问题。
一:首先下载LLM Studio(LM Studio - Discover, download, and run local LLMs),进入官网,点击下载windows版本。下载完成后点击下载的.exe文件进行安装,安装时没有特别的设置,直接按照导航安装即可。