第2章第8节:标题设计技巧:实现错位文字的艺术效果 [PowerPoint精美幻灯片实战教程]

本节教程详细介绍了如何在PowerPoint中利用合并形状工具,通过增加文字尺寸,选择Arial Black字体,以及绘制和拆分矩形,创造出错位文字的艺术效果。在操作过程中,强调了亲密性原则,并提供了幻灯片放映效果的检查方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  1. 本节演示如何通过合并形状工具,实现错位文字的艺术效果。
    PowerPoint精美幻灯片实战教程

  2. 在字号输入框里输入105,以增加文字的尺寸。
    PowerPoint精美幻灯片实战教程

  3. 接着将所选文字的字体,修改为Arial Black字体,使文字更加醒目。
    PowerPoint精美幻灯片实战教程

PowerPoint精美幻灯片实战教程

  1. 在此处按下并向下方拖动,使所选文字靠近下方的内容,以符合亲密性原则:相同类型的对象应该彼此靠近。您将在后面的章节中,学习设计方面的基本原则。

### 使用PSO算法优化卷积神经网络(CNN)的方法 #### PSO与CNN结合的方式 粒子群优化(PSO)作为一种高效的全局优化算法,能够有效提升卷积神经网络(CNN)的性能。具体来说,在故障诊断模型中,PSO被用来优化CNN和BiLSTM网络的参数,从而提高了模型的学习效率和诊断精度[^1]。 为了实现这一点,通常会将PSO应用于以下几个方面: - **初始化权重**:使用PSO来寻找更优的初始权重设置,而不是随机初始化。这有助于加速训练过程并改善最终收敛的质量。 - **超参数调优**:除了调整内部连接权值外,还可以利用PSO对诸如学习率、正则化系数等影响较大的超参数进行自动化的搜索空间探索。 - **结构设计**:某些情况下甚至可以通过编码不同的层配置(比如滤波器数量),让PSO参与到最佳架构的选择当中去。 下面给出一段简单的Python伪代码展示如何基于`pyswarms`库实施上述策略之一——即通过PSO优化CNN中的全连接层权重矩阵W: ```python import numpy as np from pyswarms.single.global_best import GlobalBestPSO from keras.models import Sequential from keras.layers import Dense, Conv2D, Flatten def cnn_model(weights): model = Sequential() # 假设已经定义好了前面几层... fc_layer_size = weights.shape[-1] dense_weights = weights.reshape(-1, fc_layer_size) model.add(Flatten()) model.add(Dense(fc_layer_size, activation='relu', input_shape=(None,), use_bias=False)) # 设置预估得到的最佳权重给最后一层 model.get_layer(index=-1).set_weights([dense_weights]) return model # 定义适应度函数计算损失值 def fitness_function(positions): scores = [] for pos in positions: temp_model = cnn_model(pos) # 训练一轮获取当前loss history = temp_model.fit(x_train, y_train, epochs=1, verbose=0) score = -history.history['loss'][0] scores.append(score) return np.array(scores) options = {'c1': 0.5, 'c2': 0.3, 'w': 0.9} optimizer = GlobalBestPSO(n_particles=10, dimensions=fc_layer_neurons * previous_layer_output_dim, options=options) best_cost, best_pos = optimizer.optimize(fitness_function, iters=100) optimized_cnn = cnn_model(best_pos) ``` 这段代码展示了怎样构建一个基本框架,其中包含了创建简单版的CNN以及定义适合于PSO使用的适应度评估逻辑。需要注意的是这里仅针对单个特定部分进行了简化处理;实际项目里可能还需要考虑更多细节因素如多GPU支持下的分布式运算等问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

李发展

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值