摘要: 针对基于深度学习的真实路面病害图像识别算法主要面临的复杂道路背景与病害前景比例不同、病害尺度小等导致的类别严重不平衡、路面病害与道路的几何结构特征对比不明显导致其不易识别等问题,本文提出一种基于双分支语义先验网络,用于指导自注意力骨干特征网络挖掘背景与病害前景的复杂关系,运用高效自注意力机制和互协方差自注意力机制分别对二维空间和特征通道进行语义特征提取,并引入语义局部增强模块提高局部特征聚合能力。本文提出了一种新的稀疏主体点流模块,并与传统特征金字塔网络相结合,进一步缓解路面病害的类别不平衡问题;构建了一个真实场景的道路病害分割数据集,并在该数据集和公开数据集上与多个基线模型进行对比实验,实验结果验证了本模型的有效性。
- 关键词:
- 语义先验信息 /
- 高效注意力机制 /
- 互协方差注意力机制 /
- 稀疏主体点流 /
- 类别不平衡 /
- 语义分割 /
- 路面病害 /
- 深度学习
我国公路投资固定资产累计10万亿元,公路总里程接近520
针对路面病害识别的挑战,本文提出了一种基于双分支点流语义先验的模型。该模型利用双重自注意力的语义先验模块和稀疏主体采样点流模块,有效处理复杂背景、病害尺度不一和类别不平衡问题。实验表明,该模型在真实路面病害图像识别中表现出色,提高了识别准确性和效率。
订阅专栏 解锁全文
1071

被折叠的 条评论
为什么被折叠?



