引言
状态空间方程是现代控制理论的基础,它以矩阵的形式表达系统的状态变量,输入及输出的关系。它可以描述和处理多输入多输出的系统。
目前流行的一些算法,比如:模型预测控制、卡尔曼滤波器及最优化控制都是在状态空间方程的表达形式基础上发展而来的。
状态空间方程
状态空间方程表达式
- 我们可以从如下这个例子入手,下面是一个弹簧质量阻尼系统:
- 它的动态微分方程为:
- 其中:x(t)是位移,方向向右;m是质量;b是阻尼系数,k是弹簧系数;f(t)就表示外力
- 我们对于等式的两边同时进行拉普拉斯变换,并将u(t)=f(t)、y(t) = x(t)代入进行调整,并且同时假定零初始条件为:
- 那么这样可以得到系统的传递函数为:
- 对应的系统框图如图所示:
- 对于同样的系统,在现代控制理论中,会采取状态空间方程的表达方式。
- 状态空间方程是一个集合,它包含了系统的输入、输出以及状态变量,并把他们用一系列的一阶微分方程表达出来。
- 对于上述的二阶系统,为了将其写成状态空间方程,我们需要选取合适的空间变量,才能使二阶系统转换为一些列的一阶系统:
- 选取两个状态变量:
(式1)
- 代入上述的微分方程中可以得到
- 选取两个状态变量: