0305函数的极值与最大值最小值-微分中值定理与导数的应用

1 极值

1.1 定义

设函数 f ( x ) 在点 x 0 f(x)在点x_0 f(x)在点x0的某邻域 U ( x 0 ) U(x_0) U(x0)内有定义,如果对于去心邻域 U ∘ ( x 0 , δ ) \overset{\circ}{U}(x_0,\delta) U(x0,δ)内的任一 x x x,有

f ( x ) < f ( x 0 ) (或 f ( x ) > f ( x 0 ) ) f(x)\lt f(x_0)(或f(x)\gt f(x_0)) f(x)<f(x0)(或f(x)>f(x0),

那么就称 f ( x 0 ) 为函数 f ( x ) f(x_0)为函数f(x) f(x0)为函数f(x)的一个极大值(或极小值)

注:

  1. 极值是局部的最值
  2. 最值不一定是极值,极值也不一定是最值

1.2 求极值的一般方法

定理1(必要条件)设函数 f ( x ) 在点 x 0 f(x)在点x_0 f(x)在点x0处可导,且在 x 0 x_0 x0处取得极值,则 f ′ ( x 0 ) = 0 f^{'}(x_0)=0 f(x0)=0

注:

  1. 定理1必要条件,反正不一定成立

定理2(第一充分条件)设函数 f ( x ) 在 x 0 f(x)在x_0 f(x)x0处连续,且在 x 0 x_0 x0的某去心邻域 U ∘ ( x 0 , δ ) \overset{\circ}{U}(x_0,\delta) U(x0,δ)内可导。

(1)若 x ∈ ( x 0 − δ , x 0 ) 时, f ′ ( x ) > 0 , 而 x ∈ ( x 0 , x 0 + δ ) 时, f ′ ( x ) < 0 x\in(x_0-\delta,x_0)时,f^{'}(x)\gt0,而x\in(x_0,x_0+\delta)时,f^{'}(x)\lt0 x(x0δ,x0)时,f(x)>0,x(x0,x0+δ)时,f(x)<0,则 f ( x ) 在 x 0 f(x)在x_0 f(x)x0处取得极大值;

(2)若 x ∈ ( x 0 − δ , x 0 ) 时, f ′ ( x ) < 0 , 而 x ∈ ( x 0 , x 0 + δ ) 时, f ′ ( x ) > 0 x\in(x_0-\delta,x_0)时,f^{'}(x)\lt0,而x\in(x_0,x_0+\delta)时,f^{'}(x)\gt0 x(x0δ,x0)时,f(x)<0,x(x0,x0+δ)时,f(x)>0,则 f ( x ) 在 x 0 f(x)在x_0 f(x)x0处取得极小值;

(3)若 x ∈ U ∘ ( x 0 , δ ) 时, f ′ ( x ) x\in\overset{\circ}{U}(x_0,\delta)时,f^{'}(x) xU(x0,δ)时,f(x)的符号保持不变,则 f ( x ) 在点 x 0 f(x)在点x_0 f(x)在点x0处没有极值。

证明:以 ( 1 ) 为例 x ∈ ( x 0 − δ , x 0 ) 时, f ′ ( x ) > 0 , 则 f ( x ) 在此区间函数单调递增,即 f ( x 0 ) > f ( x ) ( x 0 − δ < x < x 0 ) x ∈ ( x 0 , x 0 + δ ) 时, f ′ ( x ) < 0 , 则 f ( x ) 在此区间函数单调递减,即 f ( x 0 ) > f ( x ) ( x 0 < x < x 0 + δ ) 所以 f ( x 0 ) 为 f ( x ) 在 x 0 U ( x 0 , δ ) 邻域的一个极大值 同理可证( 2 )( 3 ) 证明:以(1)为例 \\ x\in(x_0-\delta,x_0)时,f^{'}(x)\gt0,则f(x)在此区间函数单调递增,即 \\ f(x_0)\gt f(x)(x_0-\delta\lt x\lt x_0) \\ x\in(x_0,x_0+\delta)时,f^{'}(x)\lt0,则f(x)在此区间函数单调递减,即\\ f(x_0)\gt f(x)(x_0\lt x\lt x_0+\delta) \\ 所以f(x_0)为f(x)在x_0 U(x_0,\delta)邻域的一个极大值 \\ 同理可证(2)(3) 证明:以(1)为例x(x0δ,x0)时,f(x)>0,f(x)在此区间函数单调递增,即f(x0)>f(x)(x0δ<x<x0)x(x0,x0+δ)时,f(x)<0,f(x)在此区间函数单调递减,即f(x0)>f(x)(x0<x<x0+δ)所以f(x0)f(x)x0U(x0,δ)邻域的一个极大值同理可证(2)(3

求极值的一般步骤:

f ( x ) 在区间 I f(x)在区间I f(x)在区间I上连续,除有限个点外均可导。

(1)求出导数 f ′ ( x ) f^{'}(x) f(x)

(2)令 f ′ ( x ) = 0 , 求出 f ( x ) f^{'}(x)=0,求出f(x) f(x)=0,求出f(x)的全部驻点和不可导点。

(3)考察 f ′ ( x ) f^{'}(x) f(x)在(2)所得点两侧的符号,确定该点是不是极值点;进一步确定是极大值还是极小值

(4)求出极值点的函数值。

例1 求函数 f ( x ) = ( x − 4 ) ( x + 1 ) 2 3 f(x)=(x-4)\sqrt[3]{(x+1)^2} f(x)=(x4)3(x+1)2 的极值
解 : 函数的定义域 ( − ∞ , + ∞ ) f ′ ( x ) = [ ( x − 4 ) ( x + 1 ) 2 3 ] ′ = ( x + 1 ) 2 3 + 2 ( x − 4 ) 3 ( x + 1 ) 3 = 5 ( x − 1 ) 3 x + 1 3 x = − 1 为不可导点, x = 1 为驻点 ; x ∈ ( − ∞ , − 1 ) 时, f ′ ( x ) > 0 ; x ∈ ( − 1 , 1 ) 时, f ′ ( x ) < 0 ; x ∈ ( 1 , + ∞ ) 时, f ′ ( x ) > 0 所以 x = − 1 为 f ( x ) 的极大值点, x = 1 为极值点;极值为 0 , − 3 4 3 解:函数的定义域(-\infty,+\infty) \\ f^{'}(x)=[(x-4)\sqrt[3]{(x+1)^2}]^{'}=(x+1)^{\frac{2}{3}}+\frac{2(x-4)}{3\sqrt[3]{(x+1)}} \\ =\frac{5(x-1)}{3\sqrt[3]{x+1}}\\ x=-1为不可导点,x=1为驻点 ;\\ x\in(-\infty,-1)时,f^{'}(x)\gt0;x\in(-1,1)时,f^{'}(x)\lt0;x\in(1,+\infty)时,f^{'}(x)\gt0 \\ 所以x=-1为f(x)的极大值点,x=1为极值点;极值为0,-3\sqrt[3]{4} :函数的定义域(,+)f(x)=[(x4)3(x+1)2 ]=(x+1)32+33(x+1) 2(x4)=33x+1 5(x1)x=1为不可导点,x=1为驻点;x(,1)时,f(x)>0;x(1,1)时,f(x)<0;x(1,+)时,f(x)>0所以x=1f(x)的极大值点,x=1为极值点;极值为0334

定理3(第二充分条件)设函数 f ( x ) 在 x 0 f(x)在x_0 f(x)x0处具有二阶导数且 f ′ ( x 0 ) = 0 , f ′ ′ ( x 0 ) ≠ 0 f^{'}(x_0)=0,f^{''}(x_0)\not=0 f(x0)=0,f′′(x0)=0,则

(1)当 f ′ ′ ( x ) < 0 f^{''}(x)\lt0 f′′(x)<0时,函数 f ( x ) 在点 x 0 f(x)在点x_0 f(x)在点x0处取得极大值;

(2)当 f ′ ′ ( x ) > 0 f^{''}(x)\gt0 f′′(x)>0时,函数 f ( x ) 在点 x 0 f(x)在点x_0 f(x)在点x0处取得极小值。

证明:情形( 1 ), f ′ ′ ( x ) < 0 , 按二阶导数的定义有 f ′ ′ ( x ) = lim ⁡ x → x 0 f ′ ( x ) − f ′ ( x 0 ) x − x 0 < 0 根据函数的局部保号性,当 x 在 x 0 的足够小的邻域内时, f ′ ( x ) − f ′ ( x 0 ) x − x 0 < 0 , 因为 f ′ ( x ) = 0 , 有上式得 f ′ ( x ) x − x 0 < 0 对于该去心邻域内的 x 来说, f ′ ( x ) 与 x − x 0 符号相反 当 x − x 0 < 0 即 x < x 0 时, f ′ ( x ) > 0 ; 当 x − x 0 > 0 即 x > x 0 时, f ′ ( x ) < 0 根据定理 2 知, f ( x ) 在点 x 0 处取得极大值。 类似可以证明情形( 2 ) 证明:情形(1),f^{''}(x)\lt0,按二阶导数的定义有 \\ f^{''}(x)=\lim\limits_{x\to x_0}{\frac{f^{'}(x)-f^{'}(x_0)}{x-x_0}}\lt0 \\ 根据函数的局部保号性,当x在x_0的足够小的邻域内时,\\ \frac{f^{'}(x)-f^{'}(x_0)}{x-x_0}\lt0,因为f^{'}(x)=0,有上式得\\ \frac{f^{'}(x)}{x-x_0}\lt0\\ 对于该去心邻域内的x来说,f^{'}(x)与x-x_0符号相反 \\ 当x-x_0\lt0即x\lt x_0时,f^{'}(x)\gt0;当x-x_0\gt0即x\gt x_0时,f^{'}(x)\lt0 \\ 根据定理2知,f(x)在点x_0处取得极大值。\\ 类似可以证明情形(2) 证明:情形(1),f′′(x)<0,按二阶导数的定义有f′′(x)=xx0limxx0f(x)f(x0)<0根据函数的局部保号性,当xx0的足够小的邻域内时,xx0f(x)f(x0)<0,因为f(x)=0,有上式得xx0f(x)<0对于该去心邻域内的x来说,f(x)xx0符号相反xx0<0x<x0时,f(x)>0;xx0>0x>x0时,f(x)<0根据定理2知,f(x)在点x0处取得极大值。类似可以证明情形(2

定理 3 ′ 3^{'} 3 若函数 f ( x ) 在 x 0 f(x)在x_0 f(x)x0点处存在n阶导数,且 f ′ ( x 0 ) = f ′ ′ ( x 0 ) = ⋯ = f ( n − 1 ) ( x 0 ) = 0 , f ( n ) ( x 0 ) ≠ 0 f^{'}(x_0)=f^{''}(x_0)=\cdots=f^{(n-1)}(x_0)=0,f^{(n)}(x_0)\not=0 f(x0)=f′′(x0)==f(n1)(x0)=0,f(n)(x0)=0

(1)n为奇数时, x = x 0 不是 f ( x ) x=x_0不是f(x) x=x0不是f(x)的极值点;

(2)n为偶数时, x = x 0 是 f ( x ) x=x_0是f(x) x=x0f(x)的极值点。 f ( n ) ( x 0 ) > 0 时, x = x 0 f^{(n)}(x_0)\gt0时,x=x_0 f(n)(x0)>0时,x=x0为极小值点; f ( n ) ( x 0 ) < 0 时, x = x 0 f^{(n)}(x_0)\lt0时,x=x_0 f(n)(x0)<0时,x=x0为极大值点。

证明: f ( x ) 在点 x 0 处具有 n 阶导 , ∀ x ∈ U ( x 0 ),根据泰勒公式有 f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + ⋯ + f ( n ) ( x 0 ) n ! ( x − x 0 ) n + o ( ( x − x 0 ) n ) 因为 f ′ ( x 0 ) = f ′ ′ ( x 0 ) = ⋯ = f ( n ) ( x 0 ) = 0 f ( x ) = f ( x 0 ) + f ( n ) ( x 0 ) n ! ( x − x 0 ) n + o ( ( x − x 0 ) n ) 即 f ( x ) − f ( x 0 ) = f ( n ) ( x 0 ) n ! ( x − x 0 ) n + o ( ( x − x 0 ) n ) 当 x ∈ U ( x 0 , δ ) 时, f ( x ) − f ( x 0 ) 的符号由 f ( n ) ( x 0 ) ( x − x 0 ) n 决定 f ( n ) ≠ 0 , 假设 f ( n ) > 0 , n 为奇数, 则当 x ∈ ( x 0 − δ , x 0 ) 时, f ( x ) < f ( x 0 ) ; 当 x ∈ ( x 0 , x 0 + δ ) 时, f ( x ) > f ( x 0 ) 。 同理当 f ( n ) ( x 0 ) < 0 时, f ( x ) − f ( x 0 ) 在 x 0 两侧符号不同。所以 x = x 0 不是 f ( x ) 的极值点。 n 为偶数, f ( x ) − f ( x 0 ) 符号由 f ( n ) 决定。 f ( n ) ( x 0 ) > 0 时, x = x 0 为极小值点; f ( n ) ( x 0 ) < 0 时, x = x 0 为极大值点。 证明:\\ f(x)在点x_0处具有n阶导,\forall x\in U(x_0),根据泰勒公式有\\ f(x)=f(x_0)+f^{'}(x_0)(x-x_0)+\cdots+\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n+o((x-x_0)^n) \\ 因为f^{'}(x_0)=f^{''}(x_0)=\cdots=f^{(n)}(x_0)=0\\ f(x)=f(x_0)+\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n+o((x-x_0)^n)即 \\ f(x)-f(x_0)=\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n+o((x-x_0)^n) \\ 当x\in U(x_0,\delta)时,f(x)-f(x_0)的符号由f^{(n)}(x_0)(x-x_0)^n决定\\ f^{(n)}\not=0,假设f^{(n)}\gt0,n为奇数,\\ 则当x\in(x_0-\delta,x_0)时,f(x)\lt f(x_0);当x\in(x_0,x_0+\delta)时,f(x)\gt f(x_0)。\\同理当f^{(n)}(x_0)\lt0时,f(x)-f(x_0)在x_0两侧符号不同。所以x=x_0不是f(x)的极值点。 \\ n为偶数,f(x)-f(x_0)符号由f^{(n)}决定。\\ f^{(n)}(x_0)\gt0时,x=x_0为极小值点;f^{(n)}(x_0)\lt0时,x=x_0为极大值点。 证明:f(x)在点x0处具有n阶导,xU(x0),根据泰勒公式有f(x)=f(x0)+f(x0)(xx0)++n!f(n)(x0)(xx0)n+o((xx0)n)因为f(x0)=f′′(x0)==f(n)(x0)=0f(x)=f(x0)+n!f(n)(x0)(xx0)n+o((xx0)n)f(x)f(x0)=n!f(n)(x0)(xx0)n+o((xx0)n)xU(x0,δ)时,f(x)f(x0)的符号由f(n)(x0)(xx0)n决定f(n)=0,假设f(n)>0,n为奇数,则当x(x0δ,x0)时,f(x)<f(x0);x(x0,x0+δ)时,f(x)>f(x0)同理当f(n)(x0)<0时,f(x)f(x0)x0两侧符号不同。所以x=x0不是f(x)的极值点。n为偶数,f(x)f(x0)符号由f(n)决定。f(n)(x0)>0时,x=x0为极小值点;f(n)(x0)<0时,x=x0为极大值点。

注:若函数 f ( x ) 在 x 0 f(x)在x_0 f(x)x0点处存在n阶导数,且 f ′ ( x 0 ) = f ′ ′ ( x 0 ) = ⋯ = f ( n − 1 ) ( x 0 ) = 0 , f ( n ) ( x 0 ) ≠ 0 f^{'}(x_0)=f^{''}(x_0)=\cdots=f^{(n-1)}(x_0)=0,f^{(n)}(x_0)\not=0 f(x0)=f′′(x0)==f(n1)(x0)=0,f(n)(x0)=0,则 你为奇数是, ( x 0 , f ( x 0 ) ) 你为奇数是,(x_0,f(x_0)) 你为奇数是,(x0,f(x0))是函数 f ( x ) f(x) f(x)的拐点; n 为偶数时, ( x 0 , f ( x 0 ) ) 不是函数 f ( x ) n为偶数时,(x_0,f(x_0))不是函数f(x) n为偶数时,(x0,f(x0))不是函数f(x)的拐点。
证明: 把 f ′ ′ ( x ) 按泰勒公式展开,有 f ′ ′ ( x ) = f ′ ′ ( x 0 ) + f ′ ′ ′ ( x 0 ) ( x − x 0 ) + ⋯ + f ( n ) ( x 0 ) ( n − 2 ) ! ( x − x 0 ) n − 2 + o ( ( x − x 0 ) n − 2 ) 因为 f ′ ′ ( x 0 ) = f ′ ′ ′ ( x 0 ) = ⋯ = f ( n − 1 ) ( x 0 ) = 0 , 所以 f ′ ′ ( x ) = f ( n ) ( x 0 ) ( n − 2 ) ! ( x − x 0 ) n − 2 + o ( ( x − x 0 ) n − 2 ) n 为奇数, n − 2 也为奇数 , 同上, f ′ ′ ( x ) 在点 x 0 两侧符号相反, ( x 0 , f ( x 0 ) ) 是函数 f ( x ) 的拐点; n 为偶数 , n − 2 也是偶数 , f ′ ′ ( x ) 在点 x 0 两侧符号相同 , ( x 0 , f ( x 0 ) ) 不是函数 f ( x ) 的拐点。 证明:\\ 把f^{''}(x)按泰勒公式展开,有\\ f^{''}(x)=f^{''}(x_0)+f^{'''}(x_0)(x-x_0)+\cdots+\frac{f^{(n)}(x_0)}{(n-2)!}(x-x_0)^{n-2}+o((x-x_0)^{n-2}) \\ 因为f^{''}(x_0)=f^{'''}(x_0)=\cdots=f^{(n-1)}(x_0)=0,所以\\ f^{''}(x)=\frac{f^{(n)}(x_0)}{(n-2)!}(x-x_0)^{n-2}+o((x-x_0)^{n-2})\\ n为奇数,n-2也为奇数,同上,f^{''}(x)在点x_0两侧符号相反,(x_0,f(x_0))是函数f(x)的拐点;\\ n为偶数,n-2也是偶数,f^{''}(x)在点x_0两侧符号相同,(x_0,f(x_0))不是函数f(x)的拐点。 证明:f′′(x)按泰勒公式展开,有f′′(x)=f′′(x0)+f′′′(x0)(xx0)++(n2)!f(n)(x0)(xx0)n2+o((xx0)n2)因为f′′(x0)=f′′′(x0)==f(n1)(x0)=0,所以f′′(x)=(n2)!f(n)(x0)(xx0)n2+o((xx0)n2)n为奇数,n2也为奇数,同上,f′′(x)在点x0两侧符号相反,(x0,f(x0))是函数f(x)的拐点;n为偶数,n2也是偶数,f′′(x)在点x0两侧符号相同,(x0,f(x0))不是函数f(x)的拐点。

例1 设函数 f ( x ) 对任意 x ∈ R f(x)对任意x\in R f(x)对任意xR,满足 ( x − 1 ) f ′ ′ ( x ) + 2 ( x − 1 ) f ′ ( x ) = 1 − e 1 − x (x-1)f^{''}(x)+2(x-1)f^{'}(x)=1-e^{1-x} (x1)f′′(x)+2(x1)f(x)=1e1x 证明: f ( x ) 在 x = a ( a ≠ 1 ) f(x)在x=a(a\not=1) f(x)x=a(a=1)处取极值时,比为极小值。
证明:有题知 . f ( x ) 在 R 上二阶可导,且 x = a 处取得极值 , 则 f ′ ( a ) = 0 , x = a 带入可得 ( a − 1 ) f ′ ′ ( a ) + 2 ( a − 1 ) f ′ ( a ) = 1 − e 1 − a ⇒ f ′ ′ ( a ) = e a − 1 − 1 ( a − 1 ) e a − 1 a − 1 > 0 时, f ′ ′ ( a ) > 0 ; a − 1 < 0 时, f ′ ′ ( a ) > 0 所以 f ( x ) 在 x = a ( a ≠ 1 ) 处取极值时,一定是极小值。 证明:有题知.f(x)在R上二阶可导,且x=a处取得极值,则\\ f^{'}(a)=0,x=a带入可得\\ (a-1)f^{''}(a)+2(a-1)f^{'}(a)=1-e^{1-a} \Rightarrow \\ f^{''}(a)=\frac{e^{a-1}-1}{(a-1)e^{a-1}} \\ a-1\gt0时,f^{''}(a)\gt0;a-1\lt0时,f^{''}(a)\gt0 \\ 所以f(x)在x=a(a\not=1)处取极值时,一定是极小值。 证明:有题知.f(x)R上二阶可导,且x=a处取得极值,f(a)=0,x=a带入可得(a1)f′′(a)+2(a1)f(a)=1e1af′′(a)=(a1)ea1ea11a1>0时,f′′(a)>0;a1<0时,f′′(a)>0所以f(x)x=a(a=1)处取极值时,一定是极小值。

2 最大值最小值问题

2.1 求最值的一般步骤

闭区间上连续函数的最值

设函数 f ( x ) f(x) f(x)满足:

(1) f ( x ) 在 [ a , b ] f(x)在[a,b] f(x)[a,b]上连续

(2) ( a , b ) 内 (a,b)内 (a,b)有限个驻点和不可导点

求最值的步骤

(1)求出 f ( x ) 在 ( a , b ) f(x)在(a,b) f(x)(a,b)内的驻点和不可导点

(2)计算 f ( x ) f(x) f(x)在上述驻点和不可导点处的函数值及 f ( a ) , f ( b ) f(a),f(b) f(a),f(b)

(3)比较(2)中诸值的大小,其中最大的便是 f ( x ) 在 [ a , b ] f(x)在[a,b] f(x)[a,b]上的最大值,最小的便是 f ( x ) 在 [ a , b ] f(x)在[a,b] f(x)[a,b]上的最小值

例1 求 f ( x ) = ∣ x 2 − 3 x + 2 ∣ 在 [ − 3 , 4 ] f(x)=|x^2-3x+2|在[-3,4] f(x)=x23x+2∣[3,4]上的最值
解: f ( x ) = { x 2 − 3 x + 2 , x ∈ [ − 3 , 1 ] ∪ [ 2 , 4 ] − x 2 + 3 x − 2 , x ∈ ( 1 , 2 ) f ′ ( x ) = { 2 x − 3 , x ∈ [ − 3 , 1 ] ∪ [ 2 , 4 ] − 2 x + 3 , x ∈ ( 1 , 2 ) 其中 x = 1 , x = 2 是 f ( x ) 的不可导点,令 f ′ ( x ) = 0 ,得 x = 3 2 f ( 1 ) = f ( 2 ) = 0 , f ( − 3 ) = 20 , f ( 3 2 ) = 1 4 , f ( 4 ) = 6 所以函数 f ( x ) 在 [ − 3 , 4 ] 区间上在 x = 1 和 x = 2 处取得最小值,最小值为 0 ; 在 x = − 3 处取得最大值,最大值为 20 解:\\ f(x)= \begin{cases} x^2-3x+2,\quad x\in[-3,1]\cup[2,4] \\ -x^2+3x-2,\quad x\in(1,2) \\ \end{cases} \\ f^{'}(x)= \begin{cases} 2x-3,\quad x\in[-3,1]\cup[2,4] \\ -2x+3,\quad x\in(1,2) \\ \end{cases} \\ 其中x=1,x=2是f(x)的不可导点,令f^{'}(x)=0,得x=\frac{3}{2} \\ f(1)=f(2)=0,f(-3)=20,f(\frac{3}{2})=\frac{1}{4},f(4)=6 \\ 所以函数f(x)在[-3,4]区间上在x=1和x=2处取得最小值,最小值为0;在x=-3处取得最大值,最大值为20 解:f(x)={x23x+2,x[3,1][2,4]x2+3x2,x(1,2)f(x)={2x3,x[3,1][2,4]2x+3,x(1,2)其中x=1,x=2f(x)的不可导点,令f(x)=0,得x=23f(1)=f(2)=0,f(3)=20,f(23)=41,f(4)=6所以函数f(x)[3,4]区间上在x=1x=2处取得最小值,最小值为0;x=3处取得最大值,最大值为20

2.2 某个区间有一个驻点且该处是函数的极值点

函数 f ( x ) f(x) f(x)在一个区间(有限或无限,开或闭)内可导且只有一个驻点 x = x 0 ,若 x = x 0 x=x_0,若x=x_0 x=x0,若x=x0是函数的极值点

(1) f ( x 0 ) f(x_0) f(x0)为极大值时, f ( x 0 ) f(x_0) f(x0)即为该区间上的最大值;

(2) f ( x 0 ) f(x_0) f(x0)为极小值时, f ( x 0 ) f(x_0) f(x0)即为该区间上的最小值。

例2 求函数 y = x 2 − 54 x ( x < 0 ) y=x^2-\frac{54}{x}(x\lt0) y=x2x54(x<0)在何处取得最小值。
解: f ′ ( x ) = 2 x + 54 x 2 , f ′ ′ ( x ) = 2 − 108 x 3 令 f ′ ( x ) = 0 , 得 x = − 3 , f ′ ′ ( − 3 ) > 0 当 x < 0 时, x = − 3 为唯一驻点,且 x = − 3 为极小值点 所以 f ( x ) 当 x < 0 时,在 x = − 3 处取得最小值 解:\\ f^{'}(x)=2x+\frac{54}{x^2},f^{''}(x)=2-\frac{108}{x^3} \\ 令f^{'}(x)=0,得x=-3,f^{''}(-3)\gt0 \\ 当x\lt0时,x=-3为唯一驻点,且x=-3为极小值点\\ 所以f(x)当x\lt0时,在x=-3处取得最小值 解:f(x)=2x+x254,f′′(x)=2x3108f(x)=0,x=3,f′′(3)>0x<0时,x=3为唯一驻点,且x=3为极小值点所以f(x)x<0时,在x=3处取得最小值

2.3 实际问题

对于实际问题,函数可导且有最值,且一定在内部取得。此时内部唯一驻点即为最值点。

例3 将长度为a的铁丝分为两段,分别围成方形和圆形。如何分解,能使圆与正方形面积之和最小?
解 : 设围成圆的长度为 x , 则围成正方形的长度为 a − x , x ∈ [ 0 , a ] 圆与正方形面积之和 : s ( x ) = π ⋅ ( x 2 π ) 2 + ( a − x 4 ) 2 s ′ ( x ) = x 2 π + x − a 8 , s ′ ′ ( x ) = π + 4 8 π > 0 令 s ′ ( x ) = 0 , 得 x = a π π + 4 x = a π π + 4 为 s ( x ) 在区间 [ 0 , a ] 内唯一驻点且为极小值点 所以 s ( x ) 在 x = a π π + 4 处取得最小值。 解:设围成圆的长度为x,则围成正方形的长度为a-x,x\in[0,a] \\ 圆与正方形面积之和:s(x)=\pi\cdot(\frac{x}{2\pi})^2+(\frac{a-x}{4})^2 \\ s^{'}(x)=\frac{x}{2\pi}+\frac{x-a}{8},s^{''}(x)=\frac{\pi+4}{8\pi}\gt0\\ 令s^{'}(x)=0,得x=\frac{a\pi}{\pi+4} \\ x=\frac{a\pi}{\pi+4}为s(x)在区间[0,a]内唯一驻点且为极小值点\\ 所以s(x)在x=\frac{a\pi}{\pi+4}处取得最小值。 :设围成圆的长度为x,则围成正方形的长度为ax,x[0,a]圆与正方形面积之和:s(x)=π(2πx)2+(4ax)2s(x)=2πx+8xas′′(x)=8ππ+4>0s(x)=0,x=π+4x=π+4s(x)在区间[0,a]内唯一驻点且为极小值点所以s(x)x=π+4处取得最小值。

2.4 证明不等式

例4 设 p , q > 1 , 1 p + 1 q = 1 p,q\gt1,\frac{1}{p}+\frac{1}{q}=1 p,q>1,p1+q1=1,证明: ∀ x > 0 , 1 p x p + 1 q ≥ x \forall x\gt0,\frac{1}{p}x^p+\frac{1}{q}\ge x x>0,p1xp+q1x
证明: 令 f ( x ) = 1 p x p + 1 q − x ( x > 0 ) f ′ ( x ) = x p − 1 − 1 , f ′ ′ ( x ) = ( p − 1 ) x p − 2 令 f ′ ( x ) = 0 , 得 x = 1 f ′ ′ ( 1 ) = p − 1 > 0 , 所以 f ( x ) 在 x = 1 处取得极小值 因为 x = 1 是 f ( x ) 在 ( 0 , + ∞ ) 内唯一驻点,所以 f ( x ) 在该点取得最小值 所以 f ( x ) = 1 p x p + 1 q − x ( x > 0 ) ≥ f ( 1 ) = 0 , 即 1 p x p + 1 q ≥ x 证明:\\ 令f(x)=\frac{1}{p}x^p+\frac{1}{q}-x(x\gt0) \\ f^{'}(x)=x^{p-1}-1,f^{''}(x)=(p-1)x^{p-2} \\ 令f^{'}(x)=0,得x=1\\ f^{''}(1)=p-1\gt0,所以f(x)在x=1处取得极小值\\ 因为x=1是f(x)在(0,+\infty)内唯一驻点,所以f(x)在该点取得最小值\\ 所以f(x)=\frac{1}{p}x^p+\frac{1}{q}-x(x\gt0)\ge f(1)=0,即 \\ \frac{1}{p}x^p+\frac{1}{q}\ge x 证明:f(x)=p1xp+q1x(x>0)f(x)=xp11,f′′(x)=(p1)xp2f(x)=0,x=1f′′(1)=p1>0,所以f(x)x=1处取得极小值因为x=1f(x)(0,+)内唯一驻点,所以f(x)在该点取得最小值所以f(x)=p1xp+q1x(x>0)f(1)=0,p1xp+q1x

后记

❓QQ:806797785

⭐️文档笔记地址:https://gitee.com/gaogzhen/math

参考:

[1]同济大学数学系.高等数学 第七版 上册[M].北京:高等教育出版社,2014.7.P152~p161.

[2]【梨米特】同济七版《高等数学》全程教学视频|纯干货知识点解析,应该是全网最细|微积分 | 高数[CP/OL].2020-04-16.p23.

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

gaog2zh

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值