二,采用attention和self-attention搭建深度神经网络
- multi-head self-attention
此时输出1个序列c1,c2,…cm.此时为single-head
L个单头注意力网络组成,每个单头注意力网络由三个参数。
每个单头自注意 不会共享参数。共3l个参数。
- multi-head attention
- 搭建深度神经网络的encoder
采用multi-head self-attention + fc 搭建encoder。
注意:此处fc会共享参数。
512*m:
M为输入序列的长度;512为输入x的维度。
由于block的输入和输出的维度相同,可以采用skip connection
每个block有两层。每个block之间不会共享参数。输入和输出的维度是一样的。
- 搭建深度神经网络的decoder网络
注意此处:x’,c,u,z均为512维向量。
- 最终的transformer模型
- Transformer与rnn的对比
因此,tranformer与rnn相似,因此以前怎么用rnn,现在就怎么用transformer模型。
- 总结