MATLAB算法实战应用案例精讲-【深度学习】归一化

本文深入探讨了特征归一化在深度学习中的重要性,包括为何进行特征归一化、常用方法、何时需要归一化以及何时不需要。文章详细介绍了归一化的基础,包括不同类型的归一化方法,以及它们对模型收敛速度的影响。同时,文章还专门讨论了层归一化的概念、应用场景和在神经网络中的作用,强调了它在递归神经网络中的优势。
摘要由CSDN通过智能技术生成

目录

为什么要做特征归一化/标准化?

常用feature scaling方法

计算方式上对比分析

feature scaling 需要还是不需要

什么时候需要feature scaling?

什么时候不需要Feature Scaling?

归一化基础知识点

1. 什么是归一化

2. 为什么要归一化

3. 为什么归一化能提高求解最优解的速度

4. 归一化有哪些类型

5. 不同归一化的使用条件

6. 归一化和标准化的联系与区别

层归一化

综述

提出背景

概念及算法

算法作用

paddle中的API

应用实例:

应用场景



为什么要做特征归一化/标准化?

Feature scaling,常见的提法有“特征归一化”、“标准化”,是数据预处理中的重要技术,有时甚至决定了算法能不能work以及work得好不好。谈到feature scaling的必要性,最常用的2个例子可能是:

  • 特征间的单位(尺度)可能不同,比如身高和体重,比如摄氏度和华氏度,比如房屋面积和房间数,一个特征的变化范围可能是[1000, 10000],另一个特征的变化范围可能是[−0.1,0.2],在进行距离有关的计算时,单位的不同会导致计算结果的不同,尺度大的特征会起决定性作用,而尺度小的特征其作用可能会被忽略,为了消除特征间单位和尺度差异的影响,以对每维特征同等看待,需要对特征进行归一化

  • 原始特征下,因尺度差异,其损失函数的等高线图可能是椭圆形,梯度方向垂直于等高线,下降会走zigzag路线,而不是指向local minimum。通过对特征进行z

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

林聪木

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值