预测技术分享

本文介绍了百度Apollo自动驾驶预测模块的原理与应用,包括车辆和行人的行为预测。车辆预测分为意图预测和速度预测,利用LSTM和CNN处理输入特征,结合全局环境信息预测未来轨迹。在交通路口,采用语义地图进行意图预测。行人预测则运用LSTM和注意力机制,考虑行人之间的交互。预测模块还考虑了与主车的交互,通过模型预测未来行为以帮助主车提前决策,确保安全。
摘要由CSDN通过智能技术生成

Q

百度的自动驾驶是多少级别的?如果出事了责任怎么划分呢?

A

百度可以做到L4级别的自动驾驶,例如萝卜快跑。Apollo平台也是支持L4级别的自动驾驶。同时百度也在研究L5级别的自动驾驶。

Q

如果环境中出现了状态有突变的他车,这时是不好预测或者没有办法预测的,那么预测模块是如何处理的呢?

A

现在的预测模块无法预测突发的时间。

Q

这里的与他车交互,是否也会同时生成对自车的决策,还是说只是为后面的规划模块服务的? 

A

这里的交互,不会直接产生对自车的决策。预测的轨迹会影响后面的规划模块,规划模块在做轨迹规划时会考虑预测的轨迹。

Q

预测的好坏如何检验,有哪些评价指标? 

A

预测常用的评价指标有MinADE,MinFDE,Miss Rate。这几个是论文中比较常见的评价指标。

Q

感知中检测到的车道线有送给预测

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值