推荐开源项目:Adaptive Equalization Learning for Semi-Supervised Semantic Segmentation
SemiSeg-AEL项目地址:https://gitcode.com/gh_mirrors/se/SemiSeg-AEL
项目介绍
Semi-Supervised Semantic Segmentation via Adaptive Equalization Learning(AEL)是一个在NeurIPS 2021会议上发表的亮点项目,旨在解决半监督语义分割中的一个重要问题——数据有限且不平衡导致某些类别表现不佳,尤其是在长尾分布的标签中。AEL提出了一种新颖的框架,通过动态适应地平衡各类别的训练,以改善这种状况。
项目技术分析
AEL的核心在于“自适应均衡学习”策略,它利用一个信心银行来跟踪类别性能,并据此调整训练过程。具体来说,AEL包含了以下三个策略:
- 自适应Copy-Paste和CutMix数据增强:为表现不佳的类别提供更多的复制或切割机会。
- 自适应数据采样:鼓励从弱分类别的像素进行采样。
- 重新加权方法:减轻伪标注带来的训练噪声。
通过这些策略,AEL能够在不平等的数据条件下,更有效地指导模型学习,从而提升整体性能。
项目及技术应用场景
AEL特别适用于数据集标签分布不均,尤其是那些存在长尾现象的应用场景。例如,在自动驾驶场景中的城市景观识别(Cityscapes),某些罕见物体的识别可能由于有限的标注样本而表现较差。此外,该技术也可以应用于图像分析、医学影像处理等领域,以提高小样本类别的识别准确率。
项目特点
- 创新性框架:AEL是首个关注并解决半监督语义分割中类别不平衡问题的方法。
- 动态性能追踪:使用信心银行实时监测类别性能,确保了训练的有效性和针对性。
- 多策略结合:通过数据增强、采样和重加权等多重手段,实现对不同类别训练的精准调节。
- 显著效果提升:在Cityscapes和Pascal VOC基准上,与其他最先进的方法相比,有显著的性能提升。
想要了解更多细节,请查看我们的论文链接。安装和训练指南可参照项目的INSTALL.md文件以及提供的训练脚本。
开始探索
要在Cityscapes数据集上使用1/2数据比例进行训练和评估,只需执行:
cd experiments/cityscapes_2
bash train.sh
其他数据分区协议可以通过修改config.yaml
中的n_sup
进行设置。
别忘了,该项目还计划集成更多领先的半监督语义分割方法,敬请期待更新!
SemiSeg-AEL项目地址:https://gitcode.com/gh_mirrors/se/SemiSeg-AEL
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考