深度立体体素:创新的3D特征嵌入技术
去发现同类优质开源项目:https://gitcode.com/
项目介绍
DeepVoxels 是一款面向对象的、持久性的3D特征嵌入模型,它通过全局优化所有可用的2D观察数据在深度学习框架中实现。在测试阶段,无需保留训练集,DeepVoxels 即可渲染同一物体的新视角图像。这个项目提供了从高精度3D扫描数据集中构建新视角图像的能力,旨在推动3D视觉领域的发展。
src="https://www.youtube.com/embed/-Vto65Yxt8s" frameborder="0" allowfullscreen>项目技术分析
DeepVoxels 的核心在于其优化过程和设计结构。代码库包括数据加载、实用工具函数以及关键的DeepVoxels模型的实现。它使用Python 3.7和PyTorch 1.0,并推荐使用Anaconda进行依赖管理。特别的是,模型包含集成子模块和遮挡处理子模块,这些都封装在自定义层中。同时,该项目还包括投影几何的实用函数,以处理3D和投影变换。
此外,该项目提供了一个方便的数据准备工具,可以利用Colmap来自动重建图像目录并提取相机内外参。用户可以根据自己的数据集调整相应的参数文件。
项目及技术应用场景
DeepVoxels 技术适用于多种3D视觉任务,包括但不限于:
- 多视图立体匹配:用于高质量的3D重建。
- 虚拟现实与增强现实:实时地生成目标物体的3D视图,增强用户体验。
- 机器人导航:帮助机器人理解环境,预测物体的3D形状。
- 自动驾驶:用于对周围环境进行三维感知,提高行驶安全。
项目特点
- 无须保留训练数据:一旦训练完成,就可以丢弃训练集,只用DeepVoxels即可渲染新的视角图像。
- 强大的灵活性:支持不同物体的3D特征学习,能适应各种复杂的场景。
- 易于复现:清晰的代码结构,详尽的文档说明,便于研究者理解和复现实验结果。
- 兼容性:基于PyTorch,与现代深度学习工具链无缝对接。
如果你正在寻找一种高效且灵活的3D视觉解决方案,或者对3D特征学习感兴趣,那么DeepVoxels无疑是值得尝试的开源项目。使用DeepVoxels,你可以体验到前沿的3D建模技术,并将其应用于你的项目中。
引用项目时,请参考以下文献:
@inproceedings{sitzmann2019deepvoxels,
author = {Vincent Sitzmann and Justus Thies and Felix Heide and Matthias Nie{\ss}ner and Gordon Wetzstein and Michael Zollh{\"o}fer},
title = {DeepVoxels: Learning Persistent 3D Feature Embeddings},
booktitle = {Proc. CVPR},
year = {2019}
}
如有任何问题,请联系 Vincent Sitzmann(邮箱:sitzmann@cs.stanford.edu)。
立即尝试DeepVoxels,探索3D视觉的新可能!
去发现同类优质开源项目:https://gitcode.com/