效率型视觉Transformer (EfficientViT) 官方教程
1. 项目介绍
效率型视觉Transformer (EfficientViT) 是一个新推出的家庭系列模型,专为高效处理高分辨率密集预测视觉任务而设计。其核心构建块是一种轻量级的多尺度线性注意力模块,该模块仅通过硬件友好操作实现全局接收场和多尺度学习,使得EfficientViT在保持TensorRT兼容性的同时,非常适合于GPU部署。它在性能与效率之间提供了最新最优的权衡,已在ICCV 2023上被接受。
2. 项目快速启动
安装依赖
确保你已经安装了Python 3.7+ 和 PyTorch。你可以使用conda
或pip
来安装:
conda create -n efficientvit python=3.7 torchvision torchaudio
conda activate efficientvit
pip install -r requirements.txt
下载模型并进行推理
以下是如何加载预训练模型并对图像进行分类的示例:
from efficientvit import EfficientViT
import torch
# 加载模型
model = EfficientViT.from_pretrained('efficientvit-s')
# 准备一张图像
image_path = 'path/to/your/image.jpg'
input_image = ...
# 转换为模型输入格式
input_tensor = ...
# 进行推理
with torch.no_grad():
output = model(input_tensor)
# 获取类别预测
predicted_class = torch.argmax(output.logits)
请注意,你需要替换'path/to/your/image.jpg'
为你的图片路径,并对输入图像进行适当的预处理(如调整大小、归一化等)以适应模型的要求。
3. 应用案例和最佳实践
- 图像分割: EfficientViT已被用于高效的图像分割任务,相比SegFormer和SegNeXt分别提供更高的GPU延迟降低。
- 超分辨率: 在超分辨率任务中,它可以达到比Restormer快6.4倍的速度,同时提高PSNR0.11dB。
- 医疗图像分割: 在CVPR 2024 Segment Anything In Medical Images On Laptop Challenge中,MedficientSAM(基于EfficientViT-SAM)获得了第一名。
- FPGA加速器: 已经有人开发了基于FPGA的EfficientViT加速器,提高了部署效率。
推荐最佳实践包括使用模型的适当变体针对特定任务,并利用硬件优化(如TensorRT)提升推理速度。
4. 典型生态项目
- NVIDIA Jetson Generative AI Lab: EfficientViT现可在NVIDIA Jetson平台上用于生成人工智能实验。
- MIT主页和MIT新闻: EfficientViT受到了MIT的关注并在其主页和新闻中得到突出报道。
- Segmentation Training Code: 提供了用于图像分割任务的训练代码。
- 开源社区: 在GitHub上有广泛的讨论和贡献,可以通过star和fork支持项目进一步发展。
引用论文
如果你使用了EfficientViT,请引用以下论文:
@article{cai2022efficientvit,
title={Efficientvit: Enhanced linear attention for high-resolution low-computation visual recognition},
author={Cai, Han and Chuang, Gan and Song, Han},
journal={arXiv preprint arXiv:2205.14756},
year={2022}
}
有关更多资源和详细信息,访问项目GitHub页面:EfficientViT。