AlphaFold3 安装与使用教程
项目地址:https://gitcode.com/gh_mirrors/al/AlphaFold3
1. 项目目录结构及介绍
在下载并解压 AlphaFold3
的源代码之后,你会看到以下典型的目录结构:
AlphaFold3/
├── src/ # 主要的源代码目录
│ ├── alphafold.py # AlphaFold3 程序入口
│ └── ... # 其他相关模块
├── data/ # 预训练模型和其他数据文件
│ ├── models/ # 模型权重文件
│ └── ... # 其他辅助数据
├── config/ # 配置文件目录
│ └── alphafold.conf # 默认配置文件
└── README.md # 项目说明文件
└── requirements.txt # Python依赖项列表
src/
目录包含了项目的主程序和相关模块,data/
存放模型和其他数据资源,config/
存储配置文件,而 README.md
和 requirements.txt
分别提供了项目简介和所需软件包。
2. 项目的启动文件介绍
项目的主要执行入口位于 src/alphafold.py
文件中。你可以通过运行以下命令来启动 AlphaFold3:
python src/alphafold.py --config_path=config/alphafold.conf
这个命令将会使用默认的配置文件 config/alphafold.conf
来运行 AlphaFold3。你可以根据需要修改参数或提供自定义配置文件路径。
3. 项目的配置文件介绍
config/alphafold.conf
是 AlphaFold3 的配置文件,它包含了程序运行时的各种设置,例如:
[general]
data_dir = ./data
model_name = model_1
output_dir = ./results
use_gpu = True
[features]
add_signal_peptide = False
add_transmembrane_regions = False
[distanceConstraints]
max_template_sequence_identity = 90
template_database_path = ${data_dir}/pdb_mmcif_uniprot_seqres_90_2021-11-05.tar.gz
[prediction]
num_models = 1
ensemble_model = False
[general]
部分设置了基本的工作目录、模型名称、输出目录和是否使用GPU。[features]
区域控制特征提取,如是否添加信号肽和跨膜区域信息。[distanceConstraints]
部分用于设置模板序列匹配的阈值和数据库路径。[prediction]
部分规定了模型数量、是否采用模型集合以及预测相关设定。
你可以根据实际需求调整这些参数以优化 AlphaFold3 的性能和结果。
以上即为 AlphaFold3 的安装和使用基础指南。请注意,在实际操作前,确保你的系统已经安装了所有必需的Python库(参照 requirements.txt
)并且满足硬件要求,特别是对于GPU的使用。在运行过程中,如果有任何错误或疑问,建议查看项目文档或在GitHub上查找解决方案。