1、克隆项目到本地服务器:
git clone https://github.com/RosettaCommons/RFdiffusion.git
2、下载RFDiffusion的权重文件:
cd RFdiffusion
mkdir models && cd models
wget http://files.ipd.uw.edu/pub/RFdiffusion/6f5902ac237024bdd0c176cb93063dc4/Base_ckpt.pt
wget http://files.ipd.uw.edu/pub/RFdiffusion/e29311f6f1bf1af907f9ef9f44b8328b/Complex_base_ckpt.pt
wget http://files.ipd.uw.edu/pub/RFdiffusion/60f09a193fb5e5ccdc4980417708dbab/Complex_Fold_base_ckpt.pt
wget http://files.ipd.uw.edu/pub/RFdiffusion/74f51cfb8b440f50d70878e05361d8f0/InpaintSeq_ckpt.pt
wget http://files.ipd.uw.edu/pub/RFdiffusion/76d00716416567174cdb7ca96e208296/InpaintSeq_Fold_ckpt.pt
wget http://files.ipd.uw.edu/pub/RFdiffusion/5532d2e1f3a4738decd58b19d633b3c3/ActiveSite_ckpt.pt
wget http://files.ipd.uw.edu/pub/RFdiffusion/12fc204edeae5b57713c5ad7dcb97d39/Base_epoch8_ckpt.pt
Optional:
wget http://files.ipd.uw.edu/pub/RFdiffusion/f572d396fae9206628714fb2ce00f72e/Complex_beta_ckpt.pt
# original structure prediction weights
wget http://files.ipd.uw.edu/pub/RFdiffusion/1befcb9b28e2f778f53d47f18b7597fa/RF_structure_prediction_weights.pt
注意:下载权重如果服务器网络不好的话,可以先下载到本地,然后在上传服务器!
3、安装环境及依赖:
# 这一步需要先 cd 到RFdiffusion的文件夹里面
conda env create -f env/SE3nv.yml
# Conda 安装 SE3-Transformer
conda activate SE3nv
cd env/SE3Transformer
pip install --no-cache-dir -r requirements.txt
python setup.py install
cd ../.. # change into the root directory of the repository
pip install -e . # install the rfdiffusion module from the root of the repository
这一步可能会遇到问题:
# 运行测试脚本的时候发现报错,PyTorch不支持CUDA,然后发现通过上述步骤安装的是cup版的Pytorch,所以卸载Pytorch重新安装GPU支持的 conda remove pytorch #卸载当前的 PyTorch conda install pytorch==1.9.1 cudatoolkit=11.1 -c pytorch # 安装支持 CUDA 的 PyTorch
4、执行测试脚本,无条件单体结构的生成:
mkdir 0_output_test # 创建一个测试文件夹
./scripts/run_inference.py 'contigmap.contigs=[150-150]' inference.output_prefix=0_output_test/test inference.num_designs=10 # 无条件生成10个长度150氨基酸的结构
大功告成!