蛋白质主链设计模型-RFdiffusion安装教程

1、克隆项目到本地服务器:

git clone https://github.com/RosettaCommons/RFdiffusion.git

2、下载RFDiffusion的权重文件:

cd RFdiffusion
mkdir models && cd models
wget http://files.ipd.uw.edu/pub/RFdiffusion/6f5902ac237024bdd0c176cb93063dc4/Base_ckpt.pt
wget http://files.ipd.uw.edu/pub/RFdiffusion/e29311f6f1bf1af907f9ef9f44b8328b/Complex_base_ckpt.pt
wget http://files.ipd.uw.edu/pub/RFdiffusion/60f09a193fb5e5ccdc4980417708dbab/Complex_Fold_base_ckpt.pt
wget http://files.ipd.uw.edu/pub/RFdiffusion/74f51cfb8b440f50d70878e05361d8f0/InpaintSeq_ckpt.pt
wget http://files.ipd.uw.edu/pub/RFdiffusion/76d00716416567174cdb7ca96e208296/InpaintSeq_Fold_ckpt.pt
wget http://files.ipd.uw.edu/pub/RFdiffusion/5532d2e1f3a4738decd58b19d633b3c3/ActiveSite_ckpt.pt
wget http://files.ipd.uw.edu/pub/RFdiffusion/12fc204edeae5b57713c5ad7dcb97d39/Base_epoch8_ckpt.pt

Optional:
wget http://files.ipd.uw.edu/pub/RFdiffusion/f572d396fae9206628714fb2ce00f72e/Complex_beta_ckpt.pt

# original structure prediction weights
wget http://files.ipd.uw.edu/pub/RFdiffusion/1befcb9b28e2f778f53d47f18b7597fa/RF_structure_prediction_weights.pt

注意:下载权重如果服务器网络不好的话,可以先下载到本地,然后在上传服务器!

 3、安装环境及依赖:

# 这一步需要先 cd 到RFdiffusion的文件夹里面
conda env create -f env/SE3nv.yml

# Conda 安装 SE3-Transformer
conda activate SE3nv
cd env/SE3Transformer
pip install --no-cache-dir -r requirements.txt
python setup.py install
cd ../.. # change into the root directory of the repository
pip install -e . # install the rfdiffusion module from the root of the repository

这一步可能会遇到问题:

# 运行测试脚本的时候发现报错,PyTorch不支持CUDA,然后发现通过上述步骤安装的是cup版的Pytorch,所以卸载Pytorch重新安装GPU支持的
conda remove pytorch        #卸载当前的 PyTorch
conda install pytorch==1.9.1 cudatoolkit=11.1 -c pytorch        # 安装支持 CUDA 的 PyTorch

 4、执行测试脚本,无条件单体结构的生成:

mkdir 0_output_test    # 创建一个测试文件夹
./scripts/run_inference.py 'contigmap.contigs=[150-150]' inference.output_prefix=0_output_test/test inference.num_designs=10    # 无条件生成10个长度150氨基酸的结构

大功告成!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值