UniAD 项目安装和配置指南
1. 项目基础介绍和主要编程语言
项目基础介绍
UniAD(Unified Autonomous Driving)是一个获得CVPR 2023最佳论文奖的自动驾驶算法框架。该项目采用规划导向的哲学,整合了感知、预测和规划等多个任务,旨在实现高性能的自动驾驶系统。
主要编程语言
该项目主要使用Python编程语言。
2. 项目使用的关键技术和框架
关键技术和框架
- BEVFormer: 用于生成鸟瞰图(BEV)特征。
- Motion Prediction: 用于预测物体的运动轨迹。
- Occupancy Prediction: 用于预测环境中的占用情况。
- Planning: 用于路径规划。
3. 项目安装和配置的准备工作和详细安装步骤
准备工作
在开始安装之前,请确保您的系统满足以下要求:
- Python 3.7 或更高版本
- CUDA 10.2 或更高版本(如果使用GPU)
- Git
详细安装步骤
步骤1:克隆项目仓库
首先,使用Git克隆UniAD项目到本地:
git clone https://github.com/OpenDriveLab/UniAD.git
cd UniAD
步骤2:创建虚拟环境(可选)
为了隔离项目依赖,建议创建一个虚拟环境:
python -m venv uniad_env
source uniad_env/bin/activate # 在Windows上使用 `uniad_env\Scripts\activate`
步骤3:安装依赖
安装项目所需的Python依赖包:
pip install -r requirements.txt
步骤4:下载预训练模型(可选)
如果您想使用预训练模型进行评估或进一步训练,可以下载预训练模型并放置在UniAD/ckpts/
目录下:
mkdir ckpts
# 下载预训练模型并放置在ckpts目录中
步骤5:配置文件
根据您的需求,编辑配置文件config.yaml
。您可以修改load_from
字段以指定预训练模型的路径,或者根据需要调整其他参数。
步骤6:运行项目
完成上述步骤后,您可以开始运行项目:
python uniad_e2e.py
结束语
通过以上步骤,您应该已经成功安装并配置了UniAD项目。如果您在安装过程中遇到任何问题,请参考项目的GitHub页面或相关文档获取更多帮助。