整理源自AI生成内容
一、 平移矩阵的推导
1、二维平面上的平移:
-
目标: 将点 (x, y) 平移到 (x + tx, y + ty),其中 (tx, ty) 是平移向量。
-
齐次坐标表示: 将点 (x, y) 表示为齐次坐标 (x, y, 1)。
-
平移矩阵: 我们需要找到一个 3x3 的矩阵 T,使得:
[x'] [ ? ? ? ] [x] [x + tx] [y'] = [ ? ? ? ] [y] = [y + ty] [1 ] [ ? ? ? ] [1] [ 1 ]
-
推导过程:
-
为了得到 x' = x + tx,我们需要矩阵的第一行是 [1 0 tx]。 这样,矩阵乘法的第一行就变成了 1x + 0y + tx*1 = x + tx。
-
为了得到 y' = y + ty,我们需要矩阵的第二行是 [0 1 ty]。 这样,矩阵乘法的第二行就变成了 0x + 1y + ty*1 = y + ty。
-
为了保持 w' = 1,我们需要矩阵的第三行是 [0 0 1]。 这样,矩阵乘法的第三行就变成了 0x + 0y + 1*1 = 1。
-
-
最终的平移矩阵:
T = [ 1 0 tx ] [ 0 1 ty ] [ 0 0 1 ]
2. 三维空间上的平移:
-
目标: 将点 (x, y, z) 平移到 (x + tx, y + ty, z + tz),其中 (tx, ty, tz) 是平移向量。
-
齐次坐标表示: 将点 (x, y, z) 表示为齐次坐标 (x, y, z, 1)。
-
平移矩阵: 我们需要找到一个 4x4 的矩阵 T,使得:
[x'] [ ? ? ? ? ] [x] [x + tx] [y'] = [ ? ? ? ? ] [y] = [y + ty] [z'] [ ? ? ? ? ] [z] = [z + tz] [1 ] [ ? ? ? ? ] [1] [ 1 ]
-
推导过程(类似二维):
-
为了得到 x' = x + tx,矩阵的第一行是 [1 0 0 tx]。
-
为了得到 y' = y + ty,矩阵的第二行是 [0 1 0 ty]。
-
为了得到 z' = z + tz,矩阵的第三行是 [0 0 1 tz]。
-
为了保持 w' = 1,矩阵的第四行是 [0 0 0 1]。
-
-
最终的平移矩阵:
T = [ 1 0 0 tx ] [ 0 1 0 ty ] [ 0 0 1 tz ] [ 0 0 0 1 ]
更直观的理解:
-
单位矩阵部分: 矩阵的左上角(2x2 或 3x3)是一个单位矩阵。 这部分保持了原始坐标 (x, y) 或 (x, y, z) 不变。 换句话说,它保留了原始的形状和方向。
-
平移向量部分: 矩阵的最右边一列(除了最后一个元素)包含了平移向量 (tx, ty) 或 (tx, ty, tz)。 这些值直接加到原始坐标上,实现平移。
-
最后的 "1": 最右下角的 "1" 确保齐次坐标的最后一个分量保持为 1,允许后续的变换继续进行。
为什么使用齐次坐标?
使用齐次坐标的关键在于,它允许我们将平移这种“加法”操作转换为矩阵乘法。 如果没有齐次坐标,平移操作无法用线性变换(矩阵乘法)来表示,这将使得复杂的组合变换难以实现。
总而言之,这种更直观的方法避免了直接从抽象的线性变换入手,而是从我们想要达到的结果(坐标的简单加法)出发,反推出所需的平移矩阵。 核心就是让齐次矩阵在乘以坐标后,正确地实现 x+tx, y+ty (或 z+tz)。
二、 旋转矩阵的推导:
-
问题: 如何推导出二维或三维空间中的旋转矩阵?
-
推演过程 (以二维为例,绕原点旋转 θ 角度):
-
考虑标准基向量 i = (1, 0) 和 j = (0, 1) 的旋转。
-
旋转后的 i 向量 i' = (cos θ, sin θ)。
-
旋转后的 j 向量 j' = (-sin θ, cos θ)。
-
旋转矩阵 R 的列由 i' 和 j' 组成:
R = [[cos θ, -sin θ], [sin θ, cos θ]]
-
三、 投影矩阵的推导:
误差向量 (Orthogonality)
定义误差向量 e = v - p。 误差向量表示 v 与其投影 p 之间的差异。
推导过程:
将 e = v - p 代入 e · u = 0,得到 (v - p) · u = 0。
展开点积:v · u - p · u = 0
-
问题: 如何推导出将向量投影到给定向量或平面上的投影矩阵?
-
推演过程 (将向量 v 投影到向量 u 上):
-
投影向量 p = ( (v · u) / (u · u) ) * u (· 表示点积)
-
设投影矩阵为 P,则 p = Pv
-
P = (u * u^T) / (u^T * u) (u^T 表示 u 的转置)
-
-
想象向量 v 和向量 u。向量 v 在向量 u 上的投影,可以看作是 v 在 u 方向上的分量。
-
这个投影向量 p 应该平行于向量 u,也就是说,p = k * u,其中 k 是一个标量,表示 p 的长度是 u 长度的多少倍。
-
因为 p = k * u,将它代入上式:v · u - (k * u) · u = 0
-
根据点积的性质,可以将标量 k 移出点积:v · u - k * (u · u) = 0
-
解出 k:k = (v · u) / (u · u)
-
最后,将 k 代回 p = k * u,得到投影向量的公式:p = ((v · u) / (u · u)) * u
-
关键在于,误差向量 e 必须与向量 u 正交(垂直)。 也就是说,e · u = 0。
-
转置的性质:
-
(Aᵀ)ᵀ = A (转置的转置等于原矩阵)
-
(A + B)ᵀ = Aᵀ + Bᵀ (矩阵和的转置等于转置的和)
投影矩阵 P = (u * u^T) / (u^T * u) 的形式。 这是将向量投影到一条由向量 u 定义的直线上的投影矩阵的公式,以矩阵形式表达。 让我解释这个公式的组成部分以及为什么它有效。
-
方阵: 如果 A 是一个 n × n 的方阵,那么 Aᵀ 也是一个 n × n 的方阵。
-
对称矩阵: 如果 Aᵀ = A,则称 A 为对称矩阵。 对称矩阵沿着主对角线对称。
-
(kA)ᵀ = kAᵀ (标量乘积的转置等于标量乘以转置)
-
(AB)ᵀ = BᵀAᵀ (矩阵乘积的转置等于转置的逆序乘积 - 非常重要!)
理解 u 和 uᵀ:
u: 是一个列向量,代表投影的目标方向。 假设 u 是一个 n x 1 的列向量。
uᵀ: 是 u 的转置,是一个行向量。 因为 u 是 n x 1,所以 uᵀ 是 1 x n。
理解 u * uᵀ (外积):
u * uᵀ 是两个向量的外积(outer product),也称为张量积(tensor product)。
如果 u 是一个 n x 1 的列向量,那么 u * uᵀ 的结果是一个 n x n 的矩阵。 这个矩阵的每一列都是向量 u 的倍数。
理解 uᵀ * u (内积):
-
uᵀ * u 是两个向量的内积(inner product),也称为点积(dot product)。
-
如果 u 是一个 n x 1 的列向量,那么 uᵀ * u 的结果是一个标量(一个数字)。 这个标量等于向量 u 的模的平方,即 ||u||²。
投影矩阵 P 的性质:
P * v: 对于任何向量 v,P * v 的结果是将 v 投影到由向量 u 定义的直线上的向量。
P² = P: 投影矩阵是幂等的(idempotent)。 也就是说,对一个向量进行两次投影,结果与进行一次投影相同。 P * (P * v) = P * v
Pᵀ = P: 投影矩阵是对称的。
整个公式的含义是: 将外积矩阵 (u * uᵀ) 除以内积的标量结果 (uᵀ * u)。
因为 uᵀ * u 是一个标量,所以 (u * uᵀ) / (uᵀ * u) 实际上是将矩阵 (u * uᵀ) 的每个元素都除以这个标量。
结果 P 是一个 n x n 的矩阵,称为投影矩阵。
理解 P = (u * uᵀ) / (uᵀ * u):
这个公式本质上是使用矩阵运算来表示之前讨论的投影公式 p = ((v · u) / (u · u)) * u。 让我们把 v · u 和 u · u 用矩阵运算的形式表示出来:
-
v · u = uᵀ * v (假设 v 是一个列向量)
-
u · u = uᵀ * u
所以, p = ((v · u) / (u · u)) * u 可以写成:
p = ( (uᵀ * v) / (uᵀ * u) ) * u
重新组合一下:
p = u * ( (uᵀ * v) / (uᵀ * u) )
把标量部分提取出来:
p = ( u / (uᵀ * u) ) * (uᵀ * v)
重新组合:
p = (u * uᵀ) / (uᵀ * u) * v
最后:
p = P * v 其中 P = (u * uᵀ) / (uᵀ * u)
总结:
P = (u * uᵀ) / (uᵀ * u) 是一个投影矩阵,可以将任何向量投影到由向量 u 定义的直线上。 这个公式的推导基于向量的内积和外积的性质,以及投影的几何意义。 重要的是理解 u * uᵀ 是一个矩阵,而 uᵀ * u 是一个标量,以及如何将它们组合在一起以形成最终的投影矩阵。