Alphafold2环境安装(非Docker方式)2023

上个月Alphafold官方更新了OpenMM库版本,因此非Docker方式安装环境较之前教程有些不同,故在此记录一下。

alphafold2官方源码仓库

Upgrade OpenMM from 7.5.1 to 7.7.0

  1. 创建一个新的conda环境指定python版本,这里使用官方推荐的3.8

    conda create --name alphafold python==3.8
    
  2. 激活环境

    conda activate alphafold 
    
  3. 安装依赖
    cudnn和cudatoolkit需根据自己电脑配置
    通过nvidia-smi或者dpkg -l | grep cudnn查询cuda和cudnn版本,我这里显示cuda11.7为driver API,cuda11.3为runtimeAPI,cudnn版本为8.2.1.32driver API:CUDA Version: 11.7cudnn

    依次执行如下指令,等待安装完成(这里我将cudatoolkit版本号设置为与11.3.0,即与runtimeCUDA版本相同)

    conda install -y -c conda-forge openmm=7.7.0 cudatoolkit==11.3.0 pdbfixer 
    
    conda install -y -c bioconda hmmer==3.3.2 hhsuite==3.3.0 kalign2==2.04
    
  4. 克隆alphafold仓库并进入(这里我用了镜像)

    git clone https://hub.fgit.ml/deepmind/alphafold.git
    
    cd alphafold
    
  5. 下载化学性质到common文件夹

    wget -q -P alphafold/alphafold/common/ https://git.scicore.unibas.ch/schwede/openstructure/-/raw/7102c63615b64735c4941278d92b554ec94415f8/modules/mol/alg/src/stereo_chemical_props.txt
    
  6. 继续配置相关依赖
    在项目根目录下创建requirements.txt文件,并添加如下内容并保存。

    absl-py==1.0.0 
    biopython==1.79
    chex==0.0.7
    dm-haiku==0.0.9
    dm-tree==0.1.6
    docker==5.0.0
    immutabledict==2.0.0
    ml-collections==0.1.0
    pillow
    numpy==1.21.6
    pandas==1.3.4
    scipy==1.7.3
    tensorflow
    

    安装requirements.txt中的依赖

    pip install -r requirements.txt
    

    安装jaxlib

    pip install --upgrade  jax==0.3.25  jaxlib==0.3.25+cuda11.cudnn82 -f https://storage.googleapis.com/jax-releases/jax_cuda_releases.html
    

    注:这里jaxlib版本要下载正确,与cuda的版本一致,我的cuda版本为11.3,cudnn版本为8.2.1.32,选择 jaxlib==0.3.25+cuda11.cudnn82 也能正常使用。大家可以去jax_cuda_releases,查看自己系统对应的jaxlib版本并修改上面的命令

  7. 验证环境是否安装成功

    python run_alphafold_test.py
    

    出现以下内容,就说明安装好了。验证成功

  8. 数据集下载
    官方下载教程:https://github.com/deepmind/alphafold#genetic-databases

    默认推荐下载所有数据集解压后大概2.6T
    这里我选择下载到alphafold项目目录下的dataset文件夹中

    bash scripts/download_all_data.sh /export/home/lzd/CADD/alphafold/dataset
    

    同时官方提供了简化数据集的下载方式解压后大概0.8T

    bash scripts/download_all_data.sh /export/home/lzd/CADD/alphafold/dataset  reduced_dbs
    

    注:使用reduced_dbs参数后将下载small_bfd数据集而不下载bfd数据集,后面运行AlphaFold时, AlphaFold参数--db_preset需修改为--db_preset=reduced_dbs

    以上命令需搭配aria2c使用,也可使用其他下载器下载至指定文件夹中进行解压。

    下面以使用IDM下载alphafold_params为例。

    1. 打开download_alphafold_params.sh文件查看资源下载路径和保存路径,如图所示。
      资源下载路径和保存路径
    2. 复制资源下载路径到IDM完成alphafold_params_2022-12-06.tar下载。
    3. 在alphafold项目根目录下新建dataset文件夹用来保存所有数据集,然后在dataset文件夹下新建params文件夹与上图中资源保存路径一致。
    4. 这里我将alphafold_params_2022-12-06.tar下载到了本地,然后使用winSCP上传至服务器中,保存在刚才新建的params文件夹下。
    5. 因为我们已经下载好了所需资源文件,所以将download_alphafold_params.sh中的下载命令注释掉
      # aria2c "${SOURCE_URL}" --dir="${ROOT_DIR}"
      
    6. 运行download_alphafold_params.sh进行解压
      bash scripts/download_alphafold_params.sh /export/home/lzd/CADD/alphafold/dataset
      
      其他数据集也可按照类似方式进行下载。
AlphaFold2安装可以通过两种方式进行。第一种是使用Docker进行安装,具体可以参考AlphaFold的GitHub页面,其中提供了详细的安装指南和步骤\[1\]。另一种方式Docker安装,需要按照一系列指南进行安装。首先,确保你的环境是Linux(Ubuntu),并且安装了CMake(版本3.23)和Python(版本3.9或3.10)\[2\]。接下来,按照以下步骤进行安装安装CMake、安装hmmer、安装HHsuite、安装Kalign、安装OpenMM、安装PDBfixer、安装Python依赖包以及安装AlphaFold\[3\]。在安装过程中可能会遇到一些报错,可以参考相关文档进行处理。完成安装后,你就可以使用AlphaFold2了。希望这个安装教程能够帮助你顺利地安装和使用AlphaFold2。 #### 引用[.reference_title] - *1* [AlphaFold2源码解析(1)--安装使用](https://blog.csdn.net/weixin_42486623/article/details/128079363)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down28v1,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* *3* [AlphaFold2无痛安装教程(超级详细)](https://blog.csdn.net/qq_39415941/article/details/128919047)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down28v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值