08 叉积的标准介绍

叉积的标准介绍


这是关于3Blue1Brown "线性代数的本质"的学习笔记。

基本概念

向量 v ⃗ \vec{v} v 叉乘向量 w ⃗ \vec{w} w 的结果大小是这两个向量围成的平行四边形的面积,方向由右手定则确定。
v ⃗ × w ⃗ \vec{v}×\vec{w} v ×w =- w ⃗ × v ⃗ \vec{w}×\vec{v} w ×v
向量叉乘结果大小可以用行列式来计算:
v ⃗ = [ a , b ] T \vec{v}=[a,b]^{T} v =[a,b]T
w ⃗ = [ c , d ] T \vec{w}=[c,d]^{T} w =[c,d]T
v ⃗ × w ⃗ = d e t ( [   a c   b d ] ) \vec{v}×\vec{w} = det(\begin{bmatrix} \ a & c \\ \ b & d \\ \end{bmatrix}) v ×w =det([ a bcd])
含义:由向量 v ⃗ \vec{v} v 和向量 w ⃗ \vec{w} w 的坐标为列的矩阵,与一个将基向量 i ⃗ \vec{i} i j ⃗ \vec{j} j 分别移至 v ⃗ \vec{v} v w ⃗ \vec{w} w 的线性变换相对应。行列式就是变换前后面积变化比例的度量。
在这里插入图片描述
在这里插入图片描述

图1 叉积的运算

几何解释

两个向量叉乘的结果是和这两个向量构成平面相垂直的第三个向量。
在这里插入图片描述

图2 两个向量叉乘的结果是是第三个向量

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值