超硬核之傅里叶公式推导(上)

  • 前言:再学习数学推导之前,popcorn建议读者感性的先去理解一下傅里叶分析,可以参考我的文章
    天道好轮回,傅里叶分析
    既然是硬核文章,就不多BB了,直接进入正题.
    在这里插入图片描述

1.三角函数系与正交性

  • 首先,我们要引入一下三角函数系和正交性的概念

我们定义一个集合:

{0,1,sinx,cosx,sin2x,cos2x,…}

  • 以上就是我所说的三角函数系列

那什么是正交呢?

  • 在三角函数系中任意两个函数在-Π到Π之间的积分为0
    ∫ − π π s i n n x c o s m x d x = 0 \int_{-\pi}^{\pi}sin{nx}cosmxdx =0 ππsinnxcosmxdx=0

  • 其中,m不等于n,若m=n

  • 那么

∫ − π π s i n n x c o s m x d x = π \int_{-\pi}^{\pi}sin{nx}cosmxdx =\pi ππsinnxcosmxdx=π

  • 注意,第二个积分不一定是sin和cos,也可以是sin,cos的所有组合

那么我们如何去理解正交性呢?
正交应该说是一个几何,或者说向量空间中的概念.
我们用向量来举例子:

  • 如果我们有两个向量A,B正交(可以理解为两个向量垂直)
  • A = (a1,a2,a3,…)
  • B = (b1,b2,b3,…)
  • 那么A` B = ai `bi 的求和 = 0
  • (这里我懒了,不想用LATEX了-_-)
    在通俗点说就是两个垂直的向量做点积等于=0.
    如果把AB两个向量换为函数,那么就等同于上面定义的正交了.

2.周期(2pi)函数的傅里叶展开(三角形式)

  • 教科书中定义了,如果周期函数满足迪尼赫雷条件,那么即可展开为傅里叶级数.
  • 即若,T = 2pi , f(x) = f(x + 2pi), 有

f ( x ) = ∑ n = 0 ∞ a n c o s n x + ∑ n = 0 ∞ b n s i n n x f(x) = \sum_{n=0}^\infty a_ncosnx+\sum_{n=0}^\infty b_nsinnx f(x)=n=0ancosnx+n=0bnsinnx

  • 是不是跟书上的有一点不一样?,其实,只要我们令n= 1
    f ( x ) = a 1 + ∑ n = 1 ∞ ( a n c o s n x + b n s i n n x ) f(x) = a_1+\sum_{n=1}^\infty (a_ncosnx+ b_nsinnx) f(x)=a1+n=1(ancosnx+bnsinnx)

3.找到周期函数傅里叶展开的系数

接下来让我们来找一找an,bn吧!

  • 这里就用到了我们前面介绍的正交性
    我们让f(x)左右两边同乘cosmx并且取积分,则有
    ∫ − π π f ( x ) c o s m x d x = ∫ − π π f ( x ) c o s m x d x \int_{-\pi}^{\pi}f(x)cosmx dx= \int_{-\pi}^{\pi}f(x)cosmx dx ππf(x)cosmxdx=ππf(x)cosmxdx
    + ∫ − π π ∑ n = 1 ∞ a n c o s n c o s m x d x +\int_{-\pi}^{\pi} \sum_{n=1}^{\infty} a_ncosncosmx dx +ππn=1ancosncosmxdx
    + ∫ − π π ∑ n = 1 ∞ b n s i n n x c o s m x d x +\int_{-\pi}^{\pi} \sum_{n=1}^{\infty}b_nsinnxcosmx dx +ππn=1bnsinnxcosmxdx
    注意注意!!!
    等式右边的三个式子,由于正交性,我们只留下了第二项,也就是
    ∫ − π π ∑ n = 1 ∞ a n c o s n c o s m x d x \int_{-\pi}^{\pi} \sum_{n=1}^{\infty} a_ncosncosmx dx ππn=1ancosncosmxdx
    只有它的n=m的时候,取值不为0,等于
    a n π a_n\pi anπ
    所以我们得出了
    a n = 1 / π ∫ − π π f ( x ) c o s n x d x an = 1 / \pi\int_{-\pi}^{\pi}f(x)cosnxdx an=1/πππf(x)cosnxdx
    同理,只需要对f(x)左右两边同×cosmx即可得出bn的结果为:
    b n = 1 / π ∫ − π π f ( x ) s i n n x d x bn = 1 / \pi\int_{-\pi}^{\pi}f(x)sinnxdx bn=1/πππf(x)sinnxdx

结语

如果我的文章对您有所启发,请点赞和评论,您的每一次鼓励都是我前进的动力!

  • 3
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

popcorn_min

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值