初等数学复习之方程和方程组(多项式的待定系数法)

把遇到的数学中不清楚的地方,再顺一遍。也为2021年下半年高等数学考试算是作准备。

一元二次方程:详见《2020-1-9初等数学复习之一元二次方程的解法》下面只记录没有部分内容

概念:形如(a,b,c是常数,且a0)的方程,叫做一元二次方程。

根与系数的关系(韦达定理),一直以为就是,这得多大的误区呀,的确就是再学一遍的过程。

如果方程的两个根是,那么
  

简言之:两根之和等于一次项与二次项之比的相反数,两根之积等于一次项与常数项之比

需要掌握就公式法和因式分解法

 

二元一次方程组解法:消元

代入消元法:

步骤:

①选取一个系数较简单的二元一次方程变形,用含有一个未知数的代数式表示另一个未知数;

②将变形后的方程代入另一个方程中,消去一个未知数,得到一个一元一次方程(在代入时,要注意不能代入原方程,只能代入另一个没有变形的方程中,以达到消元的目的);

③解这个一元一次方程,求出未知数的值;

④将求得的未知数的值代入①中变形后的方程中,

求出另一个未知数的值;

⑤用“{”联立两个未知数的值,就是方程组的解;

⑥最后检验(代入原方程组中进行检验,方程是否满足左边=右边)。

如下题:

 

加减消元法:

步骤:

①利用等式的基本性质,将原方程组中某个未知数的系数化成相等或相反数的形式;

②再利用等式的基本性质将变形后的两个方程相加或相减,消去一个未知数,得到一个一元一次方程(一定要将方程的两边都乘以同一个数,切忌只乘以一边,然后若未知数系数相等则用减法,若未知数系数互为相反数,则用加法);

③解这个一元一次方程,求出未知数的值;

④将求得的未知数的值代入原方程组中的任何一个方程中,

求出另一个未知数的值;

⑤用“{”联立两个未知数的值,就是方程组的解;

⑥最后检验求得的结果是否正确(代入原方程组中进行检验,方程是否满足左边=右边)。

如下题:

虽初中时学过,此时再学,还隐约记得,但已经是不复当年了....时光不再,自己选择的道路无论多难都要坚持走下去。 

扩展:

关于待定系数法:解一元二次方程时用到十字相乘法,其实就是特殊的待定系数法。

应用场景:按照已知条件,把原式设为几个因式的乘积,然后利用多项式恒等定理,求出各待定系数的值。如下图:

规律:

如果各项系数和为0,则必含有因式(x-1)

如果奇次项系数和与偶次项系数和相等,则必含有因式(x+1)

基本初等函数:常值函数、指数函数、三角函数、幂函数、反函数、对数函数 (记忆为 常   指三  幂反对)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

guangod

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值