前往我的主页以获得更好的阅读体验
解法说明
设方程
![]()
其中 P(x) 是关于x的多项式
先求出特征方程的两个根 r1, r2,得到通解,下面使用待定系数法求出特解
若 r 是特征方程的根,则令
![]()
其中 Q(x) 是与 P(x) 同次的多项式,下面同理
若 r 不是特征方程的根,则令
![]()
展开 Q(x),得到
![]()
代入原方程,即可解出 Q(x)
例题1

显然特征方程的根为 1 和 0,先求出对应的齐次方程的解,得到
![]()
将方程右边拆开并转换成ex的形式,得到

显然 r1 和 r2 都是特征根,则令

代入原方程,得到

解出 a = 1, b = -1, c = -2, d = -3
因此原方程通解为
![]()
例题2

与上题步骤一致,先拆分出

显然 r = 2 不是特征根,则第一条方程取 Q(x) = ax2+bx+c,第二条方程取 Q(x) = ax2+bx

注意这两条方程并不是方程组,仅仅是为了方便而写在一起
解出未知数的值

因此原方程通解为
![]()
本文详细介绍了如何使用待定系数法求解二阶常系数非齐次线性方程,通过两个例题演示了特征根法和特解构造过程。读者将学会如何处理多项式P(x)和特征根r的运用,适用于初学者和进阶者。
https://blog.dearxuan.com/2022/06/04/%E5%BE%85%E5%AE%9A%E7%B3%BB%E6%95%B0%E6%B3%95%E6%B1%82%E4%BA%8C%E9%98%B6%E5%B8%B8%E7%B3%BB%E6%95%B0%E9%9D%9E%E9%BD%90%E6%AC%A1%E7%BA%BF%E6%80%A7%E6%96%B9%E7%A8%8B%E7%89%B9%E8%A7%A3/
1万+

被折叠的 条评论
为什么被折叠?



