前往我的主页以获得更好的阅读体验
解法说明
设方程
其中 P(x) 是关于x的多项式
先求出特征方程的两个根 r1, r2,得到通解,下面使用待定系数法求出特解
若 r 是特征方程的根,则令
其中 Q(x) 是与 P(x) 同次的多项式,下面同理
若 r 不是特征方程的根,则令
展开 Q(x),得到
代入原方程,即可解出 Q(x)
例题1
显然特征方程的根为 1 和 0,先求出对应的齐次方程的解,得到
将方程右边拆开并转换成ex的形式,得到
显然 r1 和 r2 都是特征根,则令
代入原方程,得到
解出 a = 1, b = -1, c = -2, d = -3
因此原方程通解为
例题2
与上题步骤一致,先拆分出
显然 r = 2 不是特征根,则第一条方程取 Q(x) = ax2+bx+c,第二条方程取 Q(x) = ax2+bx
注意这两条方程并不是方程组,仅仅是为了方便而写在一起
解出未知数的值
因此原方程通解为