待定系数法求二阶常系数非齐次线性方程特解

前往我的主页以获得更好的阅读体验

待定系数法求二阶常系数非齐次线性方程特解 - DearXuan的主页icon-default.png?t=M4ADhttps://blog.dearxuan.com/2022/06/04/%E5%BE%85%E5%AE%9A%E7%B3%BB%E6%95%B0%E6%B3%95%E6%B1%82%E4%BA%8C%E9%98%B6%E5%B8%B8%E7%B3%BB%E6%95%B0%E9%9D%9E%E9%BD%90%E6%AC%A1%E7%BA%BF%E6%80%A7%E6%96%B9%E7%A8%8B%E7%89%B9%E8%A7%A3/

解法说明

设方程

其中 P(x) 是关于x的多项式

先求出特征方程的两个根 r1, r2,得到通解,下面使用待定系数法求出特解

若 r 是特征方程的根,则令

其中 Q(x) 是与 P(x) 同次的多项式,下面同理

若 r 不是特征方程的根,则令

展开 Q(x),得到

代入原方程,即可解出 Q(x)

例题1

显然特征方程的根为 1 和 0,先求出对应的齐次方程的解,得到

将方程右边拆开并转换成ex的形式,得到

显然 r1 和 r2 都是特征根,则令

代入原方程,得到

解出 a = 1, b = -1, c = -2, d = -3

因此原方程通解为

例题2

与上题步骤一致,先拆分出

显然 r = 2 不是特征根,则第一条方程取 Q(x) = ax2+bx+c,第二条方程取 Q(x) = ax2+bx

注意这两条方程并不是方程组,仅仅是为了方便而写在一起

解出未知数的值

因此原方程通解为

阅读终点,创作起航,您可以撰写心得或摘录文章要点写篇博文。去创作
  • 6
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 2
    评论
### 回答1: 齐次线性方程组的通可以使用矩阵运算和高斯消元。具体步骤如下: 1. 将齐次线性方程组表示为矩阵形式:Ax=b,其中A为系数矩阵,x为未知向量,b为常数向量。 2. 对系数矩阵A进行高斯消元,将其化为上三角矩阵U。 3. 根据上三角矩阵U未知向量x。具体方是从最后一行开始,依次每个未知量,然后带入前面的方程中其他未知量。 4. 齐次线性方程组的,可以使用待定系数或者变量分离。 5. 将齐次线性方程组的通相加,即可得到齐次线性方程组的通。 需要注意的是,如果系数矩阵A不可逆,则齐次线性方程组可能无或者有无穷多。 ### 回答2: 齐次线性方程组的通是一个较为复杂的数学问题,涉及到线性代数和微积分等多个数学分支。在MATLAB中,我们可以利用已经内置的函数对齐次线性方程组的通进行快速。下面我将简单介绍一下MATLAB中如何实现。 在MATLAB中,我们可以使用“linsolve”函数来齐次线性方程组。这个函数的语格式为: X=linsolve(A,B) 其中,A是系数矩阵,B是常数向量,X为向量。在使用该函数进行时,需要确保方程组的系数矩阵A是方阵,也就是说,行数和列数相等。 当用“linsolve”函数向量后,我们就可以得到齐次线性方程组的。而通就是由这个加上齐次方程组的通得到。 对于齐次线性方程组的通,我们可以使用MATLAB中自带的函数“null”来进行。这个函数可以齐次线性方程组的基础系,即所有向量的线性组合。具体使用方如下: N=null(A,'r') 其中,A是系数矩阵,'r'表示的方式为基础系。N为一个矩阵,它的每一列都是齐次线性方程组的一个基础向量。 最终,我们可以把齐次线性方程组的加上齐次方程组的通得到齐次方程组的通,即: X=Xp+K*N 其中,Xp为齐次方程组的,K为任意系数,N为齐次方程组的基础系。 ### 回答3: 在齐次线性方程组的问题时,我们需要寻。Matlab作为一种强大的计算工具,能够帮助我们快速齐次线性方程组的通。 首先,我们需要将齐次线性方程组写成矩阵形式,即Ax=b。其中A为系数矩阵,x为向量,b为常数项向量。 接着,我们可以使用Matlab中的“inv”函数系数矩阵A的逆矩阵。如果A是一个奇异矩阵(行列式不等于0),则我们可以使用inv(A)其逆矩阵。否则,我们需要使用pseudoinverse或者SPD方等其他逆矩阵的函数。 然后,我们需要齐次线性方程组的一个。一般来说,我们可以使用高斯消元或者LUP分。在Matlab中,我们可以使用“linsolve”函数来齐次线性方程组的一个。 最后,我们需要根据齐次线性方程组的齐次线性方程组的通。通可以表示为加上齐次线性方程组的的线性组合。在Matlab中,我们可以使用“null”函数齐次线性方程组的向量,然后再通过线性组合得到齐次线性方程组的通。 综上所述,Matlab能够通过逆矩阵、齐次线性方程组的等函数,快速齐次线性方程组的通。在Matlab中,我们可以使用这些函数组合起来,常方便地齐次线性方程组的通

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Dear_Xuan

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值