初等数学复习之配方法(及待定系数法)

再复习一下吧,初中的东西,对于解高数有用。

  1. 什么是配方法呢?
    由例子引出:求x2-6x-7=0中x的值。
  • 将方程式化成一般形式:x2-6x=7
  • 将二次项的系数变为1,这里的二次项系数本来就是1,这步可省
  • 方程两边同时加上一次项系数的一半.x2-2x3+32=7+32
  • 左边化成完全平方的形式,右面化成一个常数。(x-3)2=16
  • 开平方求解即得。
    看了配方法的步骤,绝对是似普相识。思路就是转变成完全平方的形式。

相关知识点:

基本初等函数的恒等变形公式:
  • ( a + b ) ( a − b ) = a 2 − b 2 (a+b)(a-b)=a^{2}-b^{2} (a+b)(ab)=a2b2

  • ( a ± b ) 2 = a 2 ± 2 a b + b 2 (a \pm b)^{2}=a^{2}\pm2 a b+b^{2} (a±b)2=a2±2ab+b2

  • ( a ± b ) 3 = a 3 ± 3 a 2 b + 3 a b 2 ± b 3 (a \pm b)^{3}=a^{3} \pm 3 a^{2} b+3 a b^{2} \pm b^{3} (a±b)3=a3±3a2b+3ab2±b3

  • ( a + b ) ( a 2 − a b + b 2 ) = a 3 + b 3 (a+b)\left(a^{2}-a b+b^{2}\right)=a^{3}+b^{3} (a+b)(a2ab+b2)=a3+b3

  • ( a − b ) ( a 2 + a b + b 2 ) = a 3 − b 3 (a-b)\left(a^{2}+a b+b^{2}\right)=a^{3}-b^{3} (ab)(a2+ab+b2)=a3b3

  • ( x + a ) ( x + b ) = x 2 + ( a + b ) x + a b (x+a)(x+b)=x^{2}+(a+b) x+a b (x+a)(x+b)=x2+(a+b)x+ab,主要应用于十字相乘法分解因式,这部分详见《2020-1-9初等数学复习之一元二次方程的解法》。

分式的变形:将一个分式化为几个真分式之和(待定系数法)

什么是待定系数法呢?还是由例子引出:
1 ( 3 x + 2 ) ( x − 2 ) = A 3 x + 2 + B x − 2 \frac{1}{(3 x+2)(x-2)}=\frac{A}{3 x+2}+\frac{B}{x-2} (3x+2)(x2)1=3x+2A+x2B,求A=?B=?,这种形式就是待定系数法。

  • 先设出函数的解析式:如上式表达式
  • 根据条件确定解析式中的未知数: 1 ( 3 x + 2 ) ( x − 2 ) = A 3 x + 2 + B x − 2 = A ( x − 2 ) + B ( 3 x + 2 ) ( 3 x + 2 ) ( x − 2 ) \frac{1}{(3 x+2)(x-2)}=\frac{A}{3 x+2}+\frac{B}{x-2}=\frac{A(x-2)+B(3 x+2)}{(3 x+2)(x-2)} (3x+2)(x2)1=3x+2A+x2B=(3x+2)(x2)A(x2)+B(3x+2),由于分母相同,所以分子 ( A + 3 B ) x + ( − 2 A + 2 B ) = 1 (A+3 B) x+(-2 A+2 B)=1 (A+3B)x+(2A+2B)=1,右边一次项式为0,建立方程组: { A + 3 B = 0 ⋯ ⋯ ( 1 ) − 2 A + 2 B = 1 ⋯ ⋯ ( 2 ) \left\{\begin{array}{l}A+3 B=0 \cdots \cdots(1) \\ -2 A+2 B=1 \cdots \cdots(2)\end{array}\right. {A+3B=0(1)2A+2B=1(2)
  • 根据方程组就可求得未知数。A=1/8,B=-3/8.

待定系数法其实是一种思想:先预设存在这样的系数使得等式成立,然后建立方程求解是一个验证的过程.在多项式中也有应用,详见《初等数学复习之方程和方程组(多项式的待定系数法)》后面的规律:
如果各项系数和为0,则必含有因式(x-1)
如:X³-4x²+2x+1 各项系数为1-4+2+1=0,则分解式中必含(x-1)那么分解式可以写成(x-1)(x2+ax+b)的形式;展开解析式X³-4x²+2x+1=x³+(a-1)x²+(b-a)x-b,得到a-1=-4,b-a=2,b=-1,求得a=-3,b=-1

如果奇次项系数和与偶次项系数和相等,则必含有因式(x+1)
如:X³+2x²+5x+4,奇次项1+5,偶次项2+4
X³+2x²+5x+4=(x+1)(x²+ax+b)=X³+(a+1)x²+(a+b)x+b
a+1=2,a+b=5,解得,a=1,b=4

根式的变形:对于含有根式的分式,将其分子或分母有理化,去掉根号

根据恒等变形公式,可以推导出有理化公式:
( a + b ) ( a − b ) = a 2 − b (a+\sqrt{b})(a-\sqrt{b})=a^{2}-b (a+b )(ab )=a2b
( a + b ) ( a − b ) = a − b (\sqrt{a}+\sqrt{b})(\sqrt{a}-\sqrt{b})=a-b (a +b )(a b )=ab
( a 3 + b 3 ) ( a 2 3 − a b 3 + b 2 3 ) = a + b (\sqrt[3]{a}+\sqrt[3]{b})\left(\sqrt[3]{a^{2}}-\sqrt[3]{a b}+\sqrt[3]{b^{2}}\right)=a+b (3a +3b )(3a2 3ab +3b2 )=a+b
( a 3 − b 3 ) ( a 2 3 + a b 3 + b 2 3 ) = a − b (\sqrt[3]{a}-\sqrt[3]{b})\left(\sqrt[3]{a^{2}}+\sqrt[3]{a b}+\sqrt[3]{b^{2}}\right)=a-b (3a 3b )(3a2 +3ab +3b2 )=ab

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

guangod

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值