图像分割unet系列------TransUnet详解

TransUnet是一种改进的U-Net,结合了CNN和Transformer,解决医学图像分割中的长距离依赖和大尺寸图像处理问题。文章探讨了其结构优势,编码层中Transformer的作用以及与纯Transformer结构的比较。作者对未来可能的工程优化方向提出疑问。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

图像分割unet系列------TransUnet详解


    TransUnet发表于2021年,它是对UNet非常重要的改进,专为医学图像分割任务设计,特别用于在医学图像中分割器官或病变等解剖结构。

1、TransUnet结构

    TransUNet在U-Net模型的基础上引入了混合编码器,将CNN和Transformer结合起来,以解决传统卷积神经网络在建模长距离依赖性和处理大尺寸图像方面的局限性。
    当前,有太多的文章介绍TransUnet的网络结构,包括注意力头的详细介绍,本文将不再赘述。我从自己的理解出发,思考几个问题,供大家一起讨论。在这里插入图片描述

2、我关心的问题

    看到这个网络结构,我的第一反应就是为什么只在编码层的最后一层进行transformer的特征提取呢?这种网络结构的设计与只采用transformer结构有哪些可取之处呢?
2.1 编码层最后一层采用transformer的意义

    以前的文章中我们讨论过,细颗粒度语义特征提取有利于对细节特征的分析,对于整体细节的分割更有意义,但是粗颗粒度语义特征的提取则增有利于定位。考虑到transformer结构的优点,即transformer的多头自注意力机制能够捕获图像中不同位置之间的依赖关系,建立特征表示中的全局上下文信息。我们大概就能明白作者这样设计的考量了,通过解码层的最后一层提高全局语义特征定位能力,加上前3层CNN结构对细节特征的提取,在解码层部分将会形成细节+精准定位的结合,从而得到更为准确的分割结果。

2.2 与纯transformer结构对比的优点

    通过问题1的思考,我们就很容易得到问题2的答案。纯transformer结构在编码过程中过度的考虑了全局特征,对于细节特征缺少attention,而在CNN之后添加transformer结构则有效的解决了这个问题。
    其实,我们还可以从另一个角度来思考这个问题。当前的显卡计算尤其是并行计算其实更有利于卷积结构,而对transformer结构的支持并不友好,不知道作者当时改进的时候有没有充分考虑这个因素。

3、总结与展望

    TransUnet的网络结构能够更好地处理长距离依赖性,捕获图像中的粗颗粒度语义信息,并提高模型的表示能力和泛化性能。同时,解码器对编码特征进行上采样过程中实现了transformer与细颗粒度的CNN特征图结合起来,以丰富语义信息,实现更精确的定位。

    transformer+CNN的形式在当前已经出现了各种改进方案,但是这种结合哪些方向才是真正可以在工程上落地的呢?在工程中,至少我优先考虑的是在合理利用硬件资源基础上进行最优化的算法设计。

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

gz7seven

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值