大模型学习笔记------SAM模型详解与思考
SAM模型是Meta 提出的分割一切模型(Segment Anything Model,SAM)突破了分割界限,极大地促进了计算机视觉基础模型的发展。SAM是视觉大模型中里程碑级别的算法。
1、SAM框架概述
SAM整体框架如下所示:
SAM模型最主要的贡献就是彻底改变计算机视觉和分割领域传统架构,它的整体架构主要包含三部分
:
- 任务(task):通过4种方式的prompts(即points、box、mask、text)来生成分割结果,但是在实际代码中并没有text方式进行文本输入。
- 模型(model):采用prompt encoder、image encoder和lightweight mask decoder模块来实现mask的生成,其中,lightweight mask decoder完成prompts特征与图像特征的融合。
- 数据集(data):: 依靠交互式标注以及数据自动/半自动标注来迭代出Segment Anything数据集。
2、Segment Anything Task
SAM模型的灵感来自于NLP 。在 NLP 中