大模型学习笔记------SAM模型详解与思考

大模型学习笔记------SAM模型详解与思考


     SAM模型是Meta 提出的分割一切模型(Segment Anything Model,SAM)突破了分割界限,极大地促进了计算机视觉基础模型的发展。SAM是视觉大模型中里程碑级别的算法。

1、SAM框架概述

    SAM整体框架如下所示:
在这里插入图片描述

    SAM模型最主要的贡献就是彻底改变计算机视觉和分割领域传统架构,它的整体架构主要包含三部分

  • 任务(task):通过4种方式的prompts(即points、box、mask、text)来生成分割结果,但是在实际代码中并没有text方式进行文本输入。
  • 模型(model):采用prompt encoder、image encoder和lightweight mask decoder模块来实现mask的生成,其中,lightweight mask decoder完成prompts特征与图像特征的融合。
  • 数据集(data):: 依靠交互式标注以及数据自动/半自动标注来迭代出Segment Anything数据集。

2、Segment Anything Task

    SAM模型的灵感来自于NLP 。在 NLP 中

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

gz7seven

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值