50、基于卷积神经网络的车辆分类与系统健康预测

基于卷积神经网络的车辆分类与系统健康预测

1. 引言

车辆交通事故如今造成了约1200万的死亡人数,以及占全球GDP 1 - 3%的社会财产损失。驾驶员的主观因素是交通事故的主要原因,因此提高道路安全性、帮助车辆预判和避免交通事故至关重要。近年来,越来越多的学者开始关注汽车研究和驾驶辅助技术的发展。在计算机视觉和安全驾驶辅助领域,基于机器视觉的汽车视觉识别是一个热点。许多研究人员已经将模式分析、图像处理和机器学习应用于车辆识别领域,并取得了有前景的成果,推动了基础科学和工程应用的发展。

早期的计算机视觉中,为智能交通网络提出了基于手工特征的车辆识别方法,例如:
- Ng等人提出了一种基于HOG - SVM的手工特征方法,使用HOG特征和高斯核函数训练SVM分类器,在2800张图像的监控摄像头数据集上,该分类器对摩托车、汽车和货车的正确分类率为92.3%。
- Chen等人提出了一个分类系统,提取纹理和HOG特征,并使用受模糊影响的SVM分类器对车辆进行分类,在2000张照片的数据集上,该系统对车辆、卡车和巴士的正确分类率为92.6%。
- Matos等人提出了一种基于双神经网络的组合方法来嵌入汽车的特征,如高度、距离和边界框,在100张图像的数据集上,该分类器的得分是69%。
- Cui使用SVM对包含340张车辆、小型巴士和卡车照片的数据集进行特征描述,并提出了两个尺度不变特征变换(SIFT)描述符和一个基于词袋(BoW)的组合模型进行特征提取,在给定数据集上,该分类器的准确率达到90.2%。
- Wen等人提出了一种基于AdaBoost的快速学习车辆分类器,用于将数据分为车辆和非车辆类型,研究人员还开发了一种获取类Haar特征的方法来快速训练分类

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值