求解平面二连杆机械臂的雅可比矩阵及应用举例

假设平面二自由度机械臂的两个关节角度分别为q_{1} 和q_{2} ,关节长度分别为 l_{1}和 l_{2}

机械臂末端p的位置坐标为:

xy分别对q_{1} 和q_{2}求偏导:   
 

则雅可比矩阵J为:

应用一:已知关节速度求解末端速度

假设关节速度为\dot{q}=[\dot{q_{1}}+\dot{q_{2}}]^{T}  ,关节长度 l_{1}=2和 l_{2}=1,关节角度q_{1}=\Pi /3 和q_{2}=\Pi /6 关节速度\dot{q_{1}}=1\dot{q_{2}}=0.5
首先计算雅可比矩阵 :

q_{1}=\Pi /3 和q_{2}=\Pi /6带入上诉推导出的雅可比矩阵J:

求得:

 

然后末端速度 : 

 综上所诉:

应用二:已知末端力求解关节力矩 

上诉二连杆机械臂,假设机械臂的末端受力F=[F_{x},F_{y}]^{T}

已知雅可比矩阵:

代入关节角度q_{1}=\Pi /3 和q_{2}=\Pi /6

假设关节力矩F=[5,8]^{T}求解关节力矩:

 综上所诉:

  • 4
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
对于一个六自由度机械,其运动学方程可以表示为: $$ \begin{bmatrix} x \\ y \\ z \\ \alpha \\ \beta \\ \gamma \\ \end{bmatrix} = f( \begin{bmatrix} \theta_1 \\ \theta_2 \\ \theta_3 \\ \theta_4 \\ \theta_5 \\ \theta_6 \\ \end{bmatrix} ) $$ 其中,$\theta_i$表示第$i$个关节的关节角,$x,y,z$分别表示机械末端执行器的位置坐标,$\alpha,\beta,\gamma$分别表示末端执行器的欧拉角。 根据可比矩阵的定义,可以得到: $$ \begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{z} \\ \dot{\alpha} \\ \dot{\beta} \\ \dot{\gamma} \\ \end{bmatrix} = J( \begin{bmatrix} \theta_1 \\ \theta_2 \\ \theta_3 \\ \theta_4 \\ \theta_5 \\ \theta_6 \\ \end{bmatrix} ) \begin{bmatrix} \dot{\theta_1} \\ \dot{\theta_2} \\ \dot{\theta_3} \\ \dot{\theta_4} \\ \dot{\theta_5} \\ \dot{\theta_6} \\ \end{bmatrix} $$ 其中,$J$为可比矩阵,$\dot{x},\dot{y},\dot{z},\dot{\alpha},\dot{\beta},\dot{\gamma}$分别表示末端执行器在$x,y,z,\alpha,\beta,\gamma$方向上的速度。 因此,可以通过求解可比矩阵,根据输入的关节角度计算出末端执行器在各个方向上的速度。 具体地,可比矩阵的计算可以通过以下公式得到: $$ J = \begin{bmatrix} \frac{\partial x}{\partial \theta_1} & \frac{\partial x}{\partial \theta_2} & \frac{\partial x}{\partial \theta_3} & \frac{\partial x}{\partial \theta_4} & \frac{\partial x}{\partial \theta_5} & \frac{\partial x}{\partial \theta_6} \\ \frac{\partial y}{\partial \theta_1} & \frac{\partial y}{\partial \theta_2} & \frac{\partial y}{\partial \theta_3} & \frac{\partial y}{\partial \theta_4} & \frac{\partial y}{\partial \theta_5} & \frac{\partial y}{\partial \theta_6} \\ \frac{\partial z}{\partial \theta_1} & \frac{\partial z}{\partial \theta_2} & \frac{\partial z}{\partial \theta_3} & \frac{\partial z}{\partial \theta_4} & \frac{\partial z}{\partial \theta_5} & \frac{\partial z}{\partial \theta_6} \\ \frac{\partial \alpha}{\partial \theta_1} & \frac{\partial \alpha}{\partial \theta_2} & \frac{\partial \alpha}{\partial \theta_3} & \frac{\partial \alpha}{\partial \theta_4} & \frac{\partial \alpha}{\partial \theta_5} & \frac{\partial \alpha}{\partial \theta_6} \\ \frac{\partial \beta}{\partial \theta_1} & \frac{\partial \beta}{\partial \theta_2} & \frac{\partial \beta}{\partial \theta_3} & \frac{\partial \beta}{\partial \theta_4} & \frac{\partial \beta}{\partial \theta_5} & \frac{\partial \beta}{\partial \theta_6} \\ \frac{\partial \gamma}{\partial \theta_1} & \frac{\partial \gamma}{\partial \theta_2} & \frac{\partial \gamma}{\partial \theta_3} & \frac{\partial \gamma}{\partial \theta_4} & \frac{\partial \gamma}{\partial \theta_5} & \frac{\partial \gamma}{\partial \theta_6} \\ \end{bmatrix} $$ 其中,$\frac{\partial f}{\partial \theta_i}$表示$f$对于$\theta_i$的偏导数,可以通过正向运动学方程计算得到。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值