ubuntu22.04安装pytorch GPU

在按照官方教程StartLocally进行PyTorch本地测试时,遇到GPU监控工具nvidia-smi报错‘Driver/libraryversionmismatch’。文章指出,该问题可以通过重启电脑来解决。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

按官方教程安装测试:Start Locally | PyTorch

使用nvidia-smi查看GPU使用情况是报错:Driver/library version mismatch.

解决:重启电脑

Ubuntu 22.04安装PyTorch可以通过多种方式进行,包括使用`conda`或`pip`。以下是两种常见的方法: ### 使用 Conda 安装 PyTorch 如果你已经安装了Anaconda或者Miniconda,可以使用`conda`命令来安装PyTorch。这种方式的好处是它可以自动处理依赖关系,并且通常会包含优化过的库以提高性能。 1. 打开终端。 2. 创建一个新的conda环境(可选但推荐): ```bash conda create -n pytorch_env python=3.9 ``` 3. 激活新创建的环境: ```bash conda activate pytorch_env ``` 4. 使用conda安装PyTorch和相关包: ```bash conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch ``` ### 使用 Pip 安装 PyTorch 如果你更倾向于使用`pip`,你需要确保你的系统中有一个合适的Python环境,并且可能需要单独安装CUDA工具包以支持GPU加速。 1. 更新你的软件包列表并升级pip: ```bash sudo apt update pip install --upgrade pip ``` 2. 设置pip镜像源为清华大学的镜像以加快下载速度(可选): ```bash pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple ``` 3. 安装PyTorch和其他必要的库: ```bash pip install torch torchvision torchaudio ``` 请注意,在使用GPU版本之前,你需要确认你的系统已经正确安装了NVIDIA驱动程序以及相应的CUDA Toolkit和cuDNN库[^2]。 如果打算利用GPU进行计算,则还需要检查当前系统中的NVIDIA显卡驱动是否满足要求,并且安装了正确的CUDA Toolkit版本。你可以通过运行`nvidia-smi`命令来查看NVIDIA驱动的状态和CUDA版本信息[^1]。 此外,请根据你的具体需求选择合适的PyTorch版本和对应的CUDA工具包版本。上述示例中使用的`cudatoolkit=11.3`是一个特定版本的例子,实际安装时应根据自己的硬件和需求调整。 最后,安装完成后,建议验证安装是否成功,可以通过导入PyTorch模块并在Python解释器中运行一些基本操作来进行测试。 ```python import torch print(torch.__version__) # 测试CUDA是否可用 print(torch.cuda.is_available()) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值