一个人内耗,说明他活在过去;一个人焦虑,说明他活在未来;只有一个人平静的时候,他才活在现在。
目前的话 主要路线还是java 看目前的趋势,java的走向应该是Spring+AI智能体方向,多看SpringAI文档
2024.10-
- 先把java基础再过一遍,主要学习一下编程思想,看黑马的视频,最近有些感悟,可以直接看视频中附带的笔记,然后不懂的地方看视频然后完成代码部分
- 做算法题,主要是刷力扣
- 不断做
King of Bots
项目,熟悉项目流程,但是这个项目版本有点老了 - 研一的课程,选的课都集中在第一学期了,所以还是提前学一点吧
- 周末用来看论文和做科研
java岗
- 一个项目,要有自己的创新点,面试官没有问,自己可以说
研究生课题
关于研究生的课题的话,是车联网驾驶员情绪识别,疲劳驾驶检测、路怒症检测这些应用场景
,目前的任务就是把李沐的视频学完,主要是熟悉pytorch框架,还是要多看论文,找到源码跑一跑改一改,找一找创新点。
驾驶员情绪识别的应用场景,可以发表论文的创新点
驾驶员情绪识别的研究应用在提高交通安全和驾驶体验方面具有重要意义。针对这个主题,以下是几个可能具有创新性、且适合发表论文的研究方向和应用场景:
1. 基于多模态数据融合的情绪识别
- 创新点:结合多种传感器数据(如摄像头图像、语音、驾驶行为和生理信号等)进行情绪识别。通过多模态数据的融合,可以增强情绪识别的精度,减少单一数据源带来的误差。
- 应用场景:利用摄像头和语音传感器,实时监测驾驶员的面部表情和声音变化,同时通过驾驶数据(如油门、刹车的操作频率)判断情绪,进一步提高系统的准确性。
2. 情绪对驾驶行为的实时干预机制
- 创新点:研究不同情绪状态(如愤怒、焦虑、疲劳)对驾驶行为的影响,并通过车载系统实时识别和预测驾驶员的情绪波动。此研究可进一步提出一种干预机制(如语音提醒或控制车辆速度)。
- 应用场景:当系统检测到驾驶员处于负面情绪时,及时通过车载系统发出提醒,甚至根据情绪状态调整车辆的驾驶参数(如减速或启用辅助驾驶模式)。
3. 个性化情绪识别模型
- 创新点:不同驾驶员的情绪表现方式可能不同,个性化的情绪识别模型可以基于驾驶员的情绪模式进行训练,从而提高识别精度。这种模型可以基于个人历史驾驶数据进行自适应训练。
- 应用场景:系统能根据不同驾驶员的情绪模式进行个性化调整,提升识别精度,从而避免误判。
4. 情绪识别驱动的智能导航优化
- 创新点:基于驾驶员情绪状态实时优化导航路径。比如,当驾驶员表现出焦虑时,系统可以推荐较为轻松的路线;当情绪低落时,提供休息区建议。
- 应用场景:该系统能够在长途驾驶中帮助驾驶员选择更为安全、舒适的路线,减少情绪波动带来的潜在风险。
5. 群体情绪与交通环境关联分析
- 创新点:通过分析多个驾驶员的情绪识别数据,研究特定时段、地点的交通环境(如拥堵、天气)对驾驶员群体情绪的影响。这种情绪数据可以进一步优化交通管理和分流。
- 应用场景:在高峰期或天气恶劣时,情绪识别系统可以提前预警潜在的高风险路段,并通知交通管理部门采取措施,以减少事故发生率。
6. 用于自动驾驶的“情绪预判”系统
- 创新点:即便在自动驾驶中,乘客情绪仍然是舒适度的重要指标。研究如何将情绪识别融入自动驾驶系统中,从而判断乘客对系统驾驶行为的满意度。
- 应用场景:在自动驾驶车辆中,系统可根据乘客情绪状态进行速度和驾驶风格的调整,提升乘车体验并缓解情绪紧张。
这些创新点不仅能提升驾驶员情绪识别的实用性,还能进一步推动智能驾驶领域的发展。