PBR 三 光照模型的分类和BRDF概述

前言

笔者写博客最大的起因是对BRDF,BSDT,BSSRDF,svBRDF等傻傻的分不清楚,而且吃惊于Disney BRDF理论操作性。但阅读很多其他博客,感觉每个章节的关联性介绍的不够,有些逻辑始终不能很好的前后贯彻。本文结合PBR 前言中的渲染方程、PBR 二中的微平面理论中讨论的散射尺度等,介绍光照模型的分类和BRDF概念。主要了解Specular F,Specular D,和Spedular G这三项是怎么来的。

跟新BRDF概念,起因是阅读参考资料2中某个公式推导有疑惑,为什么微分可以变成没有微分,现BRDF概念主要是根据Torrace and Sparrow的论文Theory for Off-Specular Reflection From Roughened Surfaces翻译而来。
参考资料:

  1. Real-Time Rendering 4th Edition, Tomas et al. , CRC Press
  2. Physical Based Rendering: From Theory to Implementation
  3. 什么时光照模型
  4. 法线分布函数相关总结
  5. 几何函数相关总结
  6. Google Filament

渲染方程与光照模型的分类

首先,我们再次看一下渲染方程:
L o ( x , w o , λ , t ) = L e ( x , w o , λ , t ) + ∫ Ω f r ( x , w i , w o , λ , t ) L i ( x , w i , λ , t ) ( w i ⋅ n )   d w i L_o(x,w_o,\lambda,t)=L_e(x,w_o,\lambda,t)+\int_\Omega f_r(x,w_i,w_o,\lambda,t)L_i(x,w_i,\lambda,t)(w_i\cdot n)\, {\rm d}w_i Lo(x,wo,λ,t)=Le(x,wo,λ,t)+Ωfr(x,wi,wo,λ,t)Li(x,wi,λ,t)(win)dwi
其中, L e L_e Le是该点发射光,如果不考虑自发光材质, L e = 0 L_e=0 Le=0,可得: L o ( x , w o , λ , t ) = ∫ Ω f r ( x , w i , w o , λ , t ) L i ( x , w i , λ , t ) ( w i ⋅ n )   d w i L_o(x,w_o,\lambda,t)=\int_\Omega f_r(x,w_i,w_o,\lambda,t)L_i(x,w_i,\lambda,t)(w_i\cdot n)\, {\rm d}w_i Lo(x,wo,λ,t)=Ωfr(x,wi,wo,λ,t)Li(x,wi,λ,t)(win)dwi
然后,我们看一下摄像机模型:
在这里插入图片描述
图片来源:Real-Time Rendering 4th Edition, Section 9.3
如上图,给定摄像机的位置 c c c(图像中像素的位置),该点所接受到的光(最终RGB值还与PBR 二中提及的线性空间的光照、色调映射相关): L i ( c , − v ) L_i(c, -v) Li(c,v)。从上图可以看出,摄像机捕捉到的光与最靠近摄像机物体朝摄像机方向的出射光是有关系的。

如果我们不考虑材质的透明性以及PBR 二中提到的次表面散射问题,我们有: L i ( c , − v ) = L o ( p , v ) L_i(c, -v)=L_o(p,v) Li(c,v)=Lo(p,v);其中, p p p为物体上的点, v v v为物体上的点朝摄像机的方向。也就是说,最后的图像只关心点 p p p的出射光,而那些物理数学模型去模拟 L o ( p , v ) L_o(p,v) Lo(p,v)的光照模型称作局部光照模型

前面PBR 二中提到的次表面散射问题与观察尺度相关,当观察尺度(采样尺度)过小时,一个点的光线,其实还受到其他点的次平面散射的影响,为了得到逼真的图像,我们需要全局着色器。这些全局着色器就在全局光照模型给出。同样,当考虑到透明物体时,光线还可以透过物体,也同样需要全局光照模型。
在这里插入图片描述
图片来源:Real-Time Rendering 4th Edition, Section 11.1
在光线 l l l下,点p所受到的光线,与从它的位置追踪到的点 r ( p , l ) r(p,l) r(p,l)相关。

光照模型小结:
在这里插入图片描述

渲染方程的参数维度:在求坐标系中,每一个方向可以被参数化为方位角(Azimuth) ϕ \phi ϕ和天顶角(仰角,zenith) θ \theta θ,光的属性由光的波长 λ \lambda λ描述。所以,渲染方程是一个12D方程:
( x , y , t , θ , ϕ , λ ) i n t → ( x , y , t , θ , ϕ , λ ) o u t (x,y,t,\theta,\phi,\lambda)_{int}\to(x,y,t,\theta,\phi,\lambda)_{out} (x,y,t,θ,ϕ,λ)int(x,y,t,θ,ϕ,λ)out
此处:

  1. x , y x,y x,y表示点的坐标,如果是三维,则会增加两个参数 z z z
  2. t t t表示的是时间;
  3. θ , ϕ \theta, \phi θ,ϕ表示的光的方向,如果增加投射,则需要计算出射点的投射光,增加两个参数;
  4. λ \lambda λ表示光的波长。

BRDF 双向反射分布函数

平面反射分类:漫反射(diffuse), 粗糙的镜面反射(glossy specular),完美镜面反射(perfect specular)和回复反射 (retro-reflective)。在这里插入图片描述
( a ) (a) (a) diffuse 反射光在半球空间均匀分布; ( b ) (b) (b) glossy specular 反射光分布在反射方向的一定区域内; ( c ) (c) (c) perfect specular 反射光集中在反射方向上; ( d ) (d) (d) retro-reflective 反射光分布在局部小区域,并折回入射方向。实际的平面的反射可能是上述几个类型的综合。
图片来源:Physically Based Rendering, Section 8.1

各向同性(isotropic)与各向异性(anisotropic):对于平面上的某个点,以该点的法线为轴选择,其光的反射分布没有改变,则该平面是各向同性的;反之,则是各向异性的。

BRDF,Bidirectional Reflectance Distribution Function,就是量化局部反射现象的函数,即渲染方程中的 f r f_r fr。该函数描述的反射现象包括:表面反射局和部次表面散射;这些现象与入射光线的方向 l l l 和出射视角 v v v相关,所以称双向反射分布函数,一般记为 f r ( l , v ) f_r(l,v) fr(l,v)。而每一个方向可以被参数化为方位角(Azimuth) ϕ \phi ϕ和天顶角(仰角,zenith) θ \theta θ,光的属性由光的波长 λ \lambda λ描述,所以 f r ( l , v ) f_r(l,v) fr(l,v)是一个5-D函数。
在这里插入图片描述
图片来源:Real-Time Rendering 4th Edition, Section 9.3

BRDF定义

改编自Torrance and Sparrow, Theory for Off-Specular Reflection From Roughened Surfaces
光亮度radiance L L L:在射线方向上的单位立体角和垂直于射线方向单位投影面积( A c o s θ A{\rm cos}\theta Acosθ)上的辐射通量光通量 Φ \Phi Φ(radiant flux)。这样,从一个很小的光源 L i L_i Li在方向 d A dA dA的光通量为:
d Φ i ( l ) = L i ( l ) c o s θ d A d l d\Phi_i(l)=L_i(l){\rm cos}\theta dAdl dΦi(l)=Li(l)cosθdAdl
其中, d l dl dl是从 d A dA dA朝光源看的立体角。另外, d A dA dA对该光源的反射光在方向 v v v的光亮度为 d L o ( l , v ) dL_o(l,v) dLo(l,v)用微分形式来表述主要是为了强调它是一个很小的光源反射所得的光亮度。 d A dA dA的总光亮度 L o L_o Lo就是 d L o ( l , v ) dL_o(l,v) dLo(l,v)在所有光源下的积分。如果我们在反射方向 v v v设置一个小的收集器,该收集器对应一个从 d A dA dA沿方向 v v v的立体角 d v dv dv,该收集器能收集到的 d A dA dA对于该小光源反射的光通量是: d Φ o = d L o ( l , v ) c o s θ d A d v d\Phi_o=dL_o(l,v){\rm cos}\theta dA dv dΦo=dLo(l,v)cosθdAdv
双向放射函数 f r ( l , v ) f_r(l,v) fr(l,v)定义为在 v v v方向反射的光亮度 d L o dL_o dLo与该小光源在单位面积上的入射光通量的比值。根据前言,光源在单位面积上的入射光通量又称为辐射照度 E E E
f r ( l , v ) = d L o ( l , v ) d Φ i ( l ) / d A = d L o ( l , v ) d E i = d L o ( l , v ) L i ( l ) c o s θ d l f_r(l,v)=\frac{dL_o(l,v)}{d\Phi_i(l)/dA}=\frac{dL_o(l,v)}{dE_i}=\frac{dL_o(l,v)}{L_i(l){\rm cos}\theta dl} fr(l,v)=dΦi(l)/dAdLo(l,v)=dEidLo(l,v)=Li(l)cosθdldLo(l,v)

其中, c o s θ = ( n ⋅ l ) {\rm cos}\theta = (n\cdot l) cosθ=(nl)。至于为什么是这个比值,在brdf为什么要定义为一个单位是sr-1的量中有很多论述。

BRDFs的特性

  • 光路可逆性 Reciprocity: f r ( l , v ) = f r ( v , l ) f_r(l,v)=f_r(v,l) fr(l,v)=fr(v,l)
  • 能量守恒: ∫ H 2 ( n ) f r ( l , v ) ( n ⋅ v ) d v ≤ 1 \int_{H^2(n)}f_r(l,v)(n\cdot v)dv\le1 H2(n)fr(l,v)(nv)dv1
    其中, H 2 ( n ) H^2(n) H2(n)是以点 p p p为圆心的半球空间, n n n是点 p p p所在平面的法线。

Directional-Hemispherical Reflectance R ( l ) R(l) R(l)

R ( l ) R(l) R(l)用来度量BRDF的能量守恒多少。也就是说,它度量给定一个方向的光到底有多少是反射的(在出射方向上的半球积分)。 R ( l ) = 0 R(l)=0 R(l)=0表示 l l l方向的光都会被吸收或者丢失; R ( l ) = 1 R(l)=1 R(l)=1表示 l l l方向上的光会全部反射。

  • directional-hemispherical reflectance R ( l ) = ∫ v ∈ Ω f r ( l , v ) ( n ⋅ v ) d v R(l)=\int_{v\in\Omega}f_r(l,v)(n\cdot v)dv R(l)=vΩfr(l,v)(nv)dv
  • hemispherical-directional reflectance R ( v ) = ∫ l ∈ Ω f r ( l , v ) ( n ⋅ l ) d l R(v)=\int_{l\in\Omega}f_r(l,v)(n\cdot l)dl R(v)=lΩfr(l,v)(nl)dl

如果光路可逆,那么 R ( l ) = R ( v ) R(l)=R(v) R(l)=R(v)

一开始,BRDF主要是针对均匀表面(表面上的BRDF是一样的)而定义的。但是在自然界中,这样的材质是很少的。所以,SVBRDF或者SBRDF(Saptial Varying Bidirectional Reflectance Distribution Function)被提出来表示空间不同而不同的BRDF。这样,svBRDF需要多两个位置变量 ( x , y ) (x,y) (x,y)

如果是各向同性的表面,isotropic BRDF一般用 ϕ = ϕ i − ϕ o \phi=\phi_i-\phi_o ϕ=ϕiϕo来代替 ϕ i \phi_i ϕi ϕ o \phi_o ϕo。是一个4-D函数
在这里插入图片描述
图片来源:3DV 2018 Tutorial,Material appearance measurement,Jiri Filip
Bidirectional Transmission Distribution Function (BTDF):双向透射分布函数。与BRDF一样是5-D函数,量化的是折射现象,一般用 f t f_t ft来表示
在这里插入图片描述
图片来源:3DV 2018 Tutorial,Material appearance measurement,Jiri Filip
Bidirectional Scattering Distribution Function(BSDF):双向散射分布函数;BTDF+BRDF,是7-D函数
在这里插入图片描述
图片来源:3DV 2018 Tutorial,Material appearance measurement,Jiri Filip

Bidirectional Scattering Surface Reflectance Distribution Function (BSSRDF):双向散射表面反射分布函数
在这里插入图片描述
图片来源:3DV 2018 Tutorial,Material appearance measurement,Jiri Filip

BTF:Bidirectional Texture Function
SLF: Surface Light Function
SRF: Surface Reflectance Function

在这里插入图片描述
图片来源:3DV 2018 Tutorial,Material appearance measurement,Jiri Filip

Lambertian 反射模型

在该反射模型中,反射率(reflectance) R ( l ) R(l) R(l)是一个常数,常常用diffuse color c d i f f c_{diff} cdiff 或者albedo ρ \rho ρ来表示这个常数。
R ( l ) = ∫ f r ( l , v ) ( n ⋅ v ) d v = ∫ f r ( l , v ) c o s θ o d v = π f r ( l , v ) R(l)=\int f_r(l,v)(n\cdot v)dv=\int f_r(l,v){\rm cos}\theta_odv=\pi f_r(l,v) R(l)=fr(l,v)(nv)dv=fr(l,v)cosθodv=πfr(l,v)
f r ( l , v ) = R ( l ) π = C d i f f π f_r(l,v)=\frac{R(l)}{\pi}=\frac{C_{diff}}{\pi} fr(l,v)=πR(l)=πCdiff
上公式介绍了 π \pi π和diffuse color是如何来的。 c o s θ {\rm cos}\theta cosθ在半球空间的积分推导见前言

Specular F 菲涅尔反射与BRDF 双向反射分布函数 f r f_r fr

首先,我们需要注意的是菲涅尔反射描述的是在不考虑微平面遮蔽的反射;其次它描述的是入射光亮度占出射光亮度的比例: F r ( w r ) L i ( w r ) = L o ( w o ) F_r(w_r)L_i(w_r)=L_o(w_o) Fr(wr)Li(wr)=Lo(wo), 其中 w r = R ( w o , n ) w_r=R(w_o,n) wr=R(wo,n)为出射光线的相对于平面法线 n n n的反射, w o w_o wo为出射方向, 如下图。
在这里插入图片描述
图片来源:Physically Based Rendering, Section 8.2
w r = w r ⊥ + w r ∥ = − w o ⊥ + w o ∥ = − ( w o − ( n ⋅ w o ) n ) + ( n ⋅ w o ) n = − w o + 2 ( n ⋅ w o ) n \begin{aligned} w_r=w_{r\perp}+w_{r\parallel}&=-w_{o\perp}+w_{o\parallel}\\ &=-(w_o-(n\cdot w_o)n)+(n\cdot w_o)n\\ &=-w_o+2(n\cdot w_o)n \end{aligned} wr=wr+wr=wo+wo=(wo(nwo)n)+(nwo)n=wo+2(nwo)n
我们知道Dirac delta distribution的一个重要特性是 ∫ f ( x ) δ ( x − x 0 ) d x = f ( x 0 ) \int f(x)\delta(x-x_0)dx=f(x_0) f(x)δ(xx0)dx=f(x0)
这样我们可以做如下推导(主要是为了消掉 L i ( ) L_i() Li()):
F r ( w r ) L i ( w r ) = L o ( w o ) = ∫ f r ( w o , w i ) L i ( w i ) ∣ c o s θ i ∣ d w i = ∫ f r ( w o , w i ) δ ( w i − w r ) δ ( w i − w r ) L i ( w i ) ∣ c o s θ i ∣ d w i = f r ( w o , w i ) δ ( w i − w r ) L i ( w r ) ∣ c o s θ r ∣ \begin{aligned} F_r(w_r)L_i(w_r)=L_o(w_o)&=\int f_r(w_o,w_i)L_i(w_i)|{\rm cos}\theta_i|dw_i\\ &=\int\frac{f_r(w_o,w_i)}{\delta(w_i-w_r)}\delta(w_i-w_r)L_i(w_i)|{\rm cos}\theta_i|dw_i\\ &=\frac{f_r(w_o,w_i)}{\delta(w_i-w_r)}L_i(w_r)|{\rm cos}\theta_r| \end{aligned} Fr(wr)Li(wr)=Lo(wo)=fr(wo,wi)Li(wi)cosθidwi=δ(wiwr)fr(wo,wi)δ(wiwr)Li(wi)cosθidwi=δ(wiwr)fr(wo,wi)Li(wr)cosθr
这样,我们可以得到: f r ( w o , w i ) = F r ( w r ) δ ( w i − w r ) ∣ c o s θ r ∣ f_r(w_o,w_i)=F_r(w_r)\frac{\delta(w_i-w_r)}{|{\rm cos}\theta_r|} fr(wo,wi)=Fr(wr)cosθrδ(wiwr)

w o = v w_o=v wo=v为视线方向, l l l v v v相对于 n n n的镜面反射, l = R ( v , n ) l=R(v,n) l=R(v,n),在镜面反射中给出任意两条射线就可以求出第三条;所以菲涅尔项 F r ( w r ) F_r(w_r) Fr(wr)常常写作 F ( n , l ) F(n,l) F(n,l)

Schlick[1994] 菲涅尔近似

F ( n , l ) ≈ F S c h l i c k ( u , F 0 , F 90 ) = F 0 + ( F 90 − F 0 ) ( 1 − u + ) 5 F(n,l)\approx F_{Schlick}(u,F_0,F_{90})= F_0 + (F_{90}-F_0)(1-u^+)^5 F(n,l)FSchlick(u,F0,F90)=F0+(F90F0)(1u+)5
其中, u = v ⋅ h u=v\cdot h u=vh或者 u = n ⋅ l u=n\cdot l u=nl h h h是中间矢量。见下文。下图展示的是上公式的近似值(虚线)与实际材质的真实值之间的对比。
在这里插入图片描述
对现实世界的观察(上图中的实线)表示,在掠射角(grazing angles),电介质和导体的菲涅尔反射率可以近似为1,即 F 90 = 1 F_{90}=1 F90=1

Spherical Gaussian Approximation of Schlick approximation

论文:Lagarde, Sébastien, “Spherical Gaussian approximation for Blinn-Phong, Phong and Fresnel”, June 2012. http://seblagarde.wordpress.com/2012/06/03/spherical-gaussien-approximation-for-blinn-phong-phong-and-fresnel/

F ( n , l ) ≈ F ( v , h ) = F 0 + ( 1 − F 0 ) 2 ( − 5.55473 ( v ⋅ h ) − 6.98316 ) ( v ⋅ h ) F(n,l)\approx F(v,h)= F_0 + (1-F_0)2^{(-5.55473(v\cdot h)-6.98316)(v\cdot h)} F(n,l)F(v,h)=F0+(1F0)2(5.55473(vh)6.98316)(vh)

Specular D 法线分布函数

PBR 二中,我们提到过物体的实际表面并不是平坦的,在真实感渲染中,通常用微小的凹凸平面来建模。这种用微小几何平面分析反射的理论就是微平面理论。
在这里插入图片描述
图片来源:Physical Based Rendering: From Theory to Implementation,Section 8.4

上图给出了一个粗糙平面与一个相对平滑平面的对比,其中大尺度上平面的法向量是 n n n。前面提到,在微平面理论中对这种非平坦表面,微平面法线 m m m的统计分布是反射函数的一个重要项。该分布就是法线分布函数(Normal Distribution Function, NDF),在某些文献中也用Specular D进行表示。

微平面的法线分布函数 D ( m ) D(m) D(m)描述了微观表面上的表面法线对于为表面面积的统计分布。给定以 m m m为中心的无穷小立体角 d w m dw_m dwm和无穷小宏观表面区域 d A dA dA ,则 D ( w m ) d w m ⋅ d A = d A ( w m ) D(w_m)dw_m \cdot dA=dA(w_m) D(wm)dwmdA=dA(wm)是相应微表面部分的总面积在方向 m m m的投影面积。
在这里插入图片描述
图片来源:Real-Time Rendering 4th Edition,Section 9.7

NDF的本质是一个密度函数,对 D ( m ) D(m) D(m) 在整个微平面法线 n n n上积分,得到所有微表面朝向 n n n方向的比例,也就是1,见下式。 ∫ m ∈ Θ D ( m ) ( n ⋅ m ) d m = 1 \int_{m\in\Theta}D(m)(n\cdot m)dm=1 mΘD(m)(nm)dm=1

对于标准球空间,其面积被约定为1( d A = 1 dA=1 dA=1),所得积分也就变成了一种面积。换句话说,投影D(m)(n·m)是被归一化的。如果沿着视线方向 v v v积分,如上图右图所示,当多个微平面的投影重叠时,背向(backfacing)微平面的负投影区域抵消了“额外的”前向(frontfacing)微平面。 ∫ m ∈ Θ D ( m ) ( v ⋅ m ) d m = v ⋅ n \int_{m\in\Theta}D(m)(v\cdot m)dm=v\cdot n mΘD(m)(vm)dm=vn
直观上,NDF就像微平面法线的直方图,在微平面法线方向具有更高的值。一般来说,大多数平面的NDF在法线 n n n方向具有最强峰值。

Specular G 遮蔽阴影函数

在这里插入图片描述
图片来源:Real-Time Rendering 4th Edition,Section 9.7
在这里插入图片描述

w o w_o wo方向的可见面积
图片来源:[Heitz 2014]Understanding the Masking-Shadowing Function in Microfacet-Based BRDFs

在产生真实感的过程中,我们其实只关心视线 v v v所涉及的范围内的微平面的光照(反射),如上图中标注为红色部分的微平面。法向分布函数只指出了微平面表面的法向在 n n n上的分布,没有体现这种排列(遮蔽信息)。为了更准确的描述这个遮蔽现象,数学上定义masking function G 1 ( m , v ) G_1(m,v) G1(m,v) 为具有法向为 m m m微平面在方向 v v v上的可见比例。同样, G 1 ( m , v ) D ( m ) ( v ⋅ m ) + d m G_1(m,v)D(m)(v\cdot m)^+dm G1(m,v)D(m)(vm)+dm在球体空间上的积分为微平面垂在视线方向的投影面积: ∫ ∈ Θ G 1 ( m , v ) D ( m ) ( v ⋅ m ) + d m = v ⋅ n \int_{\in\Theta}G_1(m,v)D(m)(v\cdot m)^+dm=v\cdot n ΘG1(m,v)D(m)(vm)+dm=vn
在这里插入图片描述
图片来源:Physical Based Rendering: From Theory to Implementation,Section 8.4

但是,最后图像的光照信息,其实还与光照方向相关。如上图所示, ( a ) (a) (a) masked,光能照到微平面但是不能被视线看到; ( b ) (b) (b)shadowed,微平面能被看到但是不能被光所照到; ( c ) (c) (c)interreflection,能被看到的微平面虽然不能被光直接照射,但是能被其他微平面的反射光所照射。为了更准确的对shadowed这一现象建模,数学上提出了联合遮蔽引用函数joint masking-shadowing function G 2 ( l , v , m ) G_2(l,v,m) G2(l,v,m)表示微平面对 v v v l l l两个方向的可见性。它们都没有考虑 ( c ) (c) (c)interreflection这一情况。

小结:F项给出光线反射的比例;N项给出反射光在微平面法线上的分布(反射光的方向分布);G项进一步给出反射光的方向的细微分布,在渲染图片上的体现在高光(反射光)的范围。

Torrance-Sparrow Model

在这里插入图片描述

中间矢量 half vector h h h

如上图所示,中间矢量 h h h指的是 v v v l l l的中间矢量, θ i = 2 θ h \theta_i = 2\theta_h θi=2θh。如果 n = h n=h n=h,则上图就是一个镜面反射。 h = l + v ∥ l + v ∥ h=\frac{l+v}{\lVert l+v\rVert} h=l+vl+v

下面推导Torrance-Sparrow Model,又称Microfacet Cook-Torrance BRDF模型。
根据法线遮蔽函数定义: D ( h ) d h ⋅ d A = d A ( h ) D(h)dh\cdot dA = dA(h) D(h)dhdA=dA(h)
根据光通量与光亮度(PBR 前言)的定义,光线 l l l在方向 h h h上的光通量等于光亮度 L ( l ) L(l) L(l)与立体角 d l {\rm d}l dl和面积 d A ⊥ ( h ) {\rm d}A^\perp(h) dA(h)的乘积: d Φ ( h ) = L i ( l ) d l d A ⊥ ( h ) = L i ( l ) d l c o s θ h d A ( h ) = L i ( l ) d l c o s θ h D ( h ) d h ⋅ d A \begin{aligned}d\Phi(h)=L_i(l){\rm d}l{\rm d}A^\perp(h)&=L_i(l){\rm d}l{\rm cos}\theta_h{\rm d}A(h)\\&=L_i(l){\rm d}l{\rm cos}\theta_h D(h)dh\cdot dA\end{aligned} dΦ(h)=Li(l)dldA(h)=Li(l)dlcosθhdA(h)=Li(l)dlcosθhD(h)dhdA

根据菲涅尔反射定义: d Φ ( v ) = F ( h , v ) d Φ ( h ) = F ( h , l ) d Φ ( h ) d\Phi(v)=F(h,v)d\Phi(h)=F(h,l)d\Phi(h) dΦ(v)=F(h,v)dΦ(h)=F(h,l)dΦ(h)

坐标系统如上图所示, θ i = 2 θ h , ϕ i = ϕ h \theta_i =2 \theta_h,\phi_i= \phi_h θi=2θh,ϕi=ϕh,我们有:
d h d v = s i n θ h d θ h d ϕ h s i n θ i d θ i d ϕ i = s i n θ h d θ h s i n 2 θ h 2 d θ h = 1 4 c o s θ h \frac{dh}{dv}=\frac{{\rm sin}\theta_hd\theta_hd\phi_h}{{\rm sin}\theta_id\theta_id\phi_i}=\frac{{\rm sin}\theta_hd\theta_h}{{\rm sin}2\theta_h2d\theta_h}=\frac{1}{4{\rm cos}\theta_h} dvdh=sinθidθidϕisinθhdθhdϕh=sin2θh2dθhsinθhdθh=4cosθh1
此处用到了正弦的二倍角公式: s i n 2 θ = 2 s i n θ c o s θ \rm sin2\theta=2\rm sin\theta cos\theta sin2θ=2sinθcosθ

根据光亮度的定义,出射光亮度为在单位立体角和单位投影面积下的出射光通量: L o ( v ) = d Φ ( v ) d v c o s θ v d A = F ( h , l ) d Φ ( h ) d h c o s θ h c o s θ v d A = F ( h , l ) L i ( l ) d l c o s θ h D ( h ) d h ⋅ d A d h c o s θ h c o s θ v d A = F ( h , l ) L i ( l ) d l D ( h ) ⋅ 4 c o s θ v \begin{aligned}L_o(v)=\frac{d\Phi(v)}{dv{\rm cos}\theta_vdA}& =\frac{F(h,l)d\Phi(h)}{dh{\rm cos}\theta_h{\rm cos}\theta_vdA}\\ &=\frac{F(h,l) L_i(l){\rm d}l{\rm cos}\theta_h D(h)dh\cdot dA }{dh{\rm cos}\theta_h{\rm cos}\theta_vdA}\\ &=\frac{F(h,l) L_i(l){\rm d}l D(h)\cdot }{4{\rm cos}\theta_v}\end{aligned} Lo(v)=dvcosθvdAdΦ(v)=dhcosθhcosθvdAF(h,l)dΦ(h)=dhcosθhcosθvdAF(h,l)Li(l)dlcosθhD(h)dhdA=4cosθvF(h,l)Li(l)dlD(h)
上式的出射光亮度,是与微小光源 d l dl dl相关的,故可写为 d L o dL_o dLo
根据双向反射函数的定义:
f r ( l , v ) = d L o L i ( l ) c o s θ l d l = F ( h , l ) L i ( l ) d l D ( h ) ⋅ 4 c o s θ v L i ( l ) c o s θ l d l = F ( h , l ) D ( h ) ⋅ 4 c o s θ v c o s θ l f_r(l,v)=\frac{dL_o}{L_i(l){\rm cos}\theta_l dl}=\frac{F(h,l) L_i(l){\rm d}l D(h)\cdot }{4{\rm cos}\theta_vL_i(l){\rm cos}\theta_l dl}=\frac{F(h,l) D(h)\cdot }{4{\rm cos}\theta_v{\rm cos}\theta_l } fr(l,v)=Li(l)cosθldldLo=4cosθvLi(l)cosθldlF(h,l)Li(l)dlD(h)=4cosθvcosθlF(h,l)D(h)
加入,几何遮蔽函数,可得:
f r ( l , v ) = F ( h , l ) G ( l , v , h ) D ( h ) ⋅ 4 c o s θ v c o s θ l = F ( h , l ) G ( l , v , h ) D ( h ) 4 ∣ n ⋅ v ∣ ∣ n ⋅ l ∣ f_r(l,v)=\frac{F(h,l) G(l,v,h)D(h)\cdot }{4{\rm cos}\theta_v{\rm cos}\theta_l }=\frac{F(h,l) G(l,v,h)D(h) }{4|n\cdot v||n\cdot l| } fr(l,v)=4cosθvcosθlF(h,l)G(l,v,h)D(h)=4nvnlF(h,l)G(l,v,h)D(h)

实际BRDF模型

在实际应用中,Disney Principled BRDF和google Filament都采用漫反射项加上镜面反射项的Cook-Torrance BRDF着色模型,其中镜面反射项,采用上述的Torrance-Sparrow Model。
f ( v , l ) = f d ( v , l ) + f r ( v , l ) = d i f f u s e + F ( h , l ) G ( l , v , h ) D ( h ) 4 ∣ n ⋅ v ∣ ∣ n ⋅ l ∣ f(v,l)=f_d(v,l)+f_r(v,l)={\rm diffuse}+\frac{F(h,l) G(l,v,h)D(h)}{4|n\cdot v||n\cdot l|} f(v,l)=fd(v,l)+fr(v,l)=diffuse+4nvnlF(h,l)G(l,v,h)D(h)
在这里插入图片描述
图片来源:google.github.io/filament/Filament.html

采用Lambertian漫反射函数, f d ( v , l ) = C d i f f π f_d(v,l)=\frac{C_{diff}}{\pi} fd(v,l)=πCdiff代码如下。

float Fd_Lambert() {
    return 1.0 / PI;
}

vec3 Fd = diffuseColor * Fd_Lambert();

但是,一般漫反射部分都与镜面反射有相关性,应该将平面的粗糙度考虑进去。并且在掠射角会产生回复反射(retro-reflection)的现象。在Disney BRDF[Burley12]中, f d f_d fd按照下式计算。
f d ( v , l ) = C d i f f π F S c h l i c k ( u = ( n ⋅ l ) , 1 , F 90 ) F S c h l i c k ( u = ( n ⋅ v ) , 1 , F 90 ) f_d(v,l)=\frac{C_{diff}}{\pi}F_{Schlick}(u=(n\cdot l),1,F_{90})F_{Schlick}(u=(n\cdot v),1,F_{90}) fd(v,l)=πCdiffFSchlick(u=(nl),1,F90)FSchlick(u=(nv),1,F90)
其中, F 90 = 0.5 + 2 ⋅ α c o s 2 ( θ d ) F_{90}=0.5+2\cdot \alpha{\rm cos}^2(\theta_d) F90=0.5+2αcos2(θd)

float F_Schlick(float u, float f0, float f90) {
    return f0 + (f90 - f0) * pow(1.0 - u, 5.0);
}

float Fd_Burley(float NoV, float NoL, float LoH, float roughness) {
    float f90 = 0.5 + 2.0 * roughness * LoH * LoH;
    float lightScatter = F_Schlick(NoL, 1.0, f90);
    float viewScatter = F_Schlick(NoV, 1.0, f90);
    return lightScatter * viewScatter * (1.0 / PI);
}

在这里插入图片描述
左图:Lambertian漫反射;右图:Disney Diffuse BRDF
图片来源:Figure 11 in https://google.github.io/filament/Filament.html

  • 1
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
### 回答1: stk_gltf是一种用于加载和展示维模型的文件格式。它是基于GLTF(GL Transmission Format)标准开发的,该标准是一种开放的、跨平台的维模型交换格式。stk_gltf文件主要包含了描述模型的几何形状、材质、动画、节点层次结构等信息。 stk_gltf文件具有以下几个显著的特点:首先,它具有较小的文件大小,能够提供高效的网络传输和加载速度。同时,它支持透明、双面渲染、纹理贴图、光照、阴影等多种视觉效果,并且可以在不同平台和设备上无缝展示维模型。此外,stk_gltf文件还支持动画效果的导入和播放,使得模型的运动和变化能够逼真地展现。 使用stk_gltf可以为设计师、工程师、游戏开发者等提供便利,因为他们能够通过该文件格式在各种应用中轻松共享和展示维模型。比如,从设计软件导出的维模型可以通过stk_gltf文件格式被加载到网页上,让用户能够在浏览器中直接查看和操作模型。此外,stk_gltf还能够与虚拟现实(VR)和增强现实(AR)技术结合使用,为用户提供更加沉浸式的交互体验。 总而言之,stk_gltf是一种以GLTF为基础的文件格式,用于加载、展示和共享维模型。它具有较小的文件大小、高效的加载速度和广泛的兼容性,为用户提供了丰富的视觉效果和交互体验。在不同领域的应用中,stk_gltf都能发挥出它的优势,让用户能够更加方便地展示和交流维模型。 ### 回答2: stk_gltf是一个用于加载和显示gltf维模型的库。gltf是一种基于json的开放标准,用于传输和显示维模型。stk_gltf提供了使用glTF加载和渲染维模型的功能,使得在Web、VR、AR等平台上展示维模型变得简单和高效。 stk_gltf具有许多优点。首先,它支持各种文件格式,包括.glb、.gltf和各种二进制和图像文件。这使得开发者可以选择适合自己项目需求的文件格式。 其次,stk_gltf提供了强大的渲染功能。它支持PBR(基于物理的渲染)、法线贴图、光照、阴影和透明度等特性,使得渲染的维模型能够呈现出逼真的效果。 此外,stk_gltf还具有良好的性能表现。它采用了一些优化策略,如资源缓存、异步加载等,以加快加载和渲染过程,提升应用的性能和用户体验。 stk_gltf还支持动画和用户交互。它可以加载包含动画的glTF模型,并提供了控制动画播放和交互行为的接口,使得开发者可以实现各种动态效果和互动功能。 总而言之,stk_gltf是一个功能强大、灵活易用的库,它提供了加载和渲染gltf维模型的能力,同时兼容各种平台和文件格式。使用stk_gltf,开发者可以轻松展示逼真的维模型,为用户带来更好的视觉体验。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值