机场新增卫星厅对中转旅客影响的评估方法
一.背景介绍
由于旅行业的快速发展,某航空公司在某机场的现有航站楼T的旅客流量已达饱和状态,为了应对未来的发展,现正增设卫星厅S。但引入卫星厅后,虽然可以缓解原有航站楼登机口不足的压力,对中转旅客的航班衔接显然具有一定的负面影响。本题希望参赛选手建立数学模型,优化分配登机口,分析中转旅客的换乘紧张程度,为航空公司航班规划的调整提供参考依据。
飞机在机场廊桥(登机口)的一次停靠通常由一对航班(到达航班和出发航班,也叫“转场”)来标识,如下图所示。航班-登机口分配就是把这样的航班对分配到合适的登机口。所谓的中转旅客就是从到达航班换乘到由同一架或不同架飞机执行的出发航班的旅客。
单纯的航班-登机口的优化分配问题已经被很好地解决[1],Sabre Airline Solutions® 有非常成熟的产品满足航空公司和机场地勤服务公司的需求。但在优化分配登机口的同时考虑最小化旅客行走时间,学界研究有限,市场上产品一般也不具备此一功能。
注:本赛题取材于中国东方航空公司和上海浦东国际机场,但对数据进行了适当修改。
二.问题描述
1.机场布局:航站楼T和卫星厅S的布局设计如下图所示。T具有完整的国际机场航站功能,包括出发、到达、出入境和候机。卫星厅S是航站楼T的延伸,可以候机,没有出入境功能。为叙述方便起见,我们统称航站楼T和卫星厅S为终端厅。
T和S之间有捷运线相通,可以快速往来运送国内、国际旅客。假定旅客无需等待,随时可以发车,单程一次需要8分钟。
航站楼T有28个登机口,卫星厅S有41个登机口。其配置见数据部分。
2.登机口分配:登机口属于固定机位,配置有相应的设备,方便飞机停靠时的各种技术操作。航班-登机口的分配需要考虑如下规则:
T和S的所有登机口统筹规划分配;
每个登机口的国内/国际、到达/出发、宽体机/ 窄体机等功能属性事先给定,不能改变,具体配置详见数据部分。飞机转场计划(见数据部分)里的航班只能分配到与之属性相吻合的登机口;
每架飞机转场的到达和出发两个航班必须分配在同一登机口进行,其间不能挪移别处;
分配在同一登机口的两飞机之间的空挡间隔时间必须大于等于45分钟;
机场另有简易临时机位,供分配不到固定登机口的飞机停靠。假定临时机位数量无限制。
注:本题数据中使用到的宽窄飞机型号分别有:
宽体机(Wide-body):332, 333, 33E, 33H, 33L, 773
窄体机(Narrow-body):319, 320, 321, 323, 325, 738, 73A, 73E, 73H, 73L。
3.旅客流程:旅客流程可以按始发旅客、终到旅客和中转旅客分类规范。但由于新建卫星厅对始发旅客和终到旅客影响甚微,故不在本赛题研究范围内。中转旅客从前一航班的到达至后一航班的出发之间的流程,按国内(D)和国际(I)、航站楼(T)和卫星厅(S)组合成16种不同的场景。这些场景的最短流程时间和捷运乘坐次数由下表给出,其中每一格的第一个数是最短流程时间(分钟),第二个数是捷运乘坐次数。捷运时间和旅客行走时间不计入最短流程时间。
例:某旅客乘坐国际航班到达卫星厅S,然后换乘国内航班从卫星厅S登机,其最短流程时间是45分钟,需乘坐捷运2次(因为需要去航站楼T办理入境手续)。
三.赛题
评估一个系统必须首先掌握该系统如何运行。真实的航班-登机口分配调度方案可能受到各种制约因素的影响,但作为评估,我们可以不妨假设其是在一定约束条件下的优化方案。也就是说,本赛题要求就以下三种情形对航班-登机口分配问题建立数学优化模型,并通过求解这些模型,进行数据评估分析。由于比赛时间有限,本赛题的所有建模和数据分析都是针对航站楼T和卫星厅S同时使用的情形。
问题一:本题只考虑航班-登机口分配。作为分析新建卫星厅对航班影响问题的第一步,首先要建立数学优化模型,尽可能多地分配航班到合适的登机口,并且在此基础上最小化被使用登机口的数量。本问题不需要考虑中转旅客的换乘,但要求把建立的数学模型进行编程,求最优解。
问题二:考虑中转旅客最短流程时间。本问题是在问题一的基础上加入旅客换乘因素,要求最小化中转旅客的总体最短流程时间,并且在此基础上最小化被使用登机口的数量。本题不考虑旅客乘坐捷运和步行时间,但也要求编程并求最优解。
问题三:考虑中转旅客的换乘时间。如前所述,新建卫星厅对航班的最大影响是中转旅客换乘时间的可能延长。因此,数学模型最终需要考虑换乘旅客总体紧张度的最小化,并且在此基础上最小化被使用登机口的数量。本问题可以在问题二的基础上细化,引入旅客换乘连接变量,并把中转旅客的换乘紧张度作为目标函数的首要因素。和前面两个问题一样,本问题也要求把建立的数学模型进行编程,并求最优解。换乘紧张度定义:
其中,行走时间由下列表格查找(单位:分钟。捷运乘坐时间需另行计算)
四.提交结果要求:
参赛选手必须按比赛规则提交规定格式的论文报告。此外,本赛题还有如下要求:
要求建立完整的数学模型
如采用离散模型,离散时间步长 =可设定为5分钟;
模型所用变量和参数都需要解释清楚。变量一般用单个小写英文字母表示;参数可以是希腊字母,也可以是第一个字母大写的英文字符串,但需要尽可能简洁;下标尽可能只用单个小写的英文字母表示;
为简洁易读易懂起见,变量可以有上撇(’),上横( ̅ )等辅助记号;
所有变量、参数和记号都必须通篇前后一致。
根据模型设计一种求解算法
给出算法之前,必须先对上述数学模型的特点进行一番分析,包括模型的规模和结构,求解的难易,等等;
算法必须针对数学模型的特点设计。论文需要解释算法的合理性,包括算法实现的难易,复杂度估计和运行时间分析。如果采用实用性算法,必须解释算法的思路;
模型算法描述必须逻辑严谨,条理清晰,同时简单易懂。
编写程序算法,并使用给定数据进行实验
程序编写可以按自己的专长选用高级语言或脚本语言,或多种方法的组合;
程序必须模块化,结构要面向目标,注释清晰;
参赛选手需要在附录中大体介绍程序和数据结构。
对实验结果进行数据分析。要求图表设计简单易懂,线条清晰,色彩分明,重点突出,标注恰到好处
给出成功分配到登机口的航班数量和比例,按宽、窄体机分别画线状图。
给出T和S登机口的使用数目和被使用登机口的平均使用率(登机口占用时间比率),要求画线状图。
仅限问题二、三:给出换乘失败旅客数量和比率。
仅限问题二、三:总体旅客换乘时间分布图:换乘时间在5分钟以内的中转旅客比率,10分钟以内的中转旅客比率,15分钟以内的中转旅客比率,……
仅限问题二、三:总体旅客换乘紧张度分布图:紧张度在0.1以内的中转旅客比率,0.2以内的中转旅客比率,0.3以内的中转旅客比率,……
参赛选手还需提交三个问题的计算结果。可以在给定的飞机转场计划(Excel表格)里增加三列,分别为“问题一登机口”,“问题二登机口”和“问题三登机口”,对应于三个子问题的分配。提交结果必须是从Excel导出的CSV格式。
五.输入数据说明
飞机转场计划和中转旅客信息包含2018年1月19、20、21三天,但本次竞赛只需要对20日到达或20日出发的航班和旅客进行分析。例如,某飞机19日到达20日出发,该飞机必须被考虑。另外,飞机转场数据还包含了一些航班和机场为‘*’的记录,只要它们的到达或出发时间发生在20日,所建立的数学模型必须考虑它们的登机口分配。
1、飞机转场计划及示例 (Pucks):
D:Domestic,国内航班;I:International,国际航班。
2、中转旅客信息及示例(Tickets):
3、登机口数据及示例(Gates):
六.参考文献
【1】Hemchand Kochukuttan and Sergey Shebalov, New Gate Planning Optimizer Perfects Gate Assignment Process, Ascend Magazine, https://www.sabreairlinesolutions.com/pdfs/Plan_Ahead.pdf
【2】Abdelghani Bouras, Mageed A. Ghaleb, Umar S. Suryahatmaja, and Ahmed M. Salem, The Airport Gate Assignment Problem: A Survey, The Scientific World Journal, Volume 2014, http://dx.doi.org/10.1155/2014/923859
【3】Dong Zhang, Diego Klabjan, Optimization for gate re-assignment, Transportation Research Part B: Methodological, Volume 95, January 2017
【4】Shuo Liu, Wenhua Chen, Jiyin Liu, Optimizing airport gate assignment with operational safety constraints, 2014 20th International Conference on Automation and Computing
注:今年竞赛的MD5码、论文与附件都是在线上传,只是三者的上传时间分开。本题的附件必须上传但不需要再发送到邮箱了。上传时间的具体安排请见网站https://cpipc.chinadegrees.cn//cw/detail/4/2c9088a465c12f520165c30e59c65fcc
上发布的《开赛公告》。
题目分析详解:
细节点:
1、针对旅客不考虑到达和始发的乘客,只考虑需要中转的旅客
2、出入境手续只能到T航站楼办理,不能在S卫星厅办理,
3、对于每个登机口航班衔接间隔时间需要大于45分钟
4、不同的登机口有宽窄机型限制
问题一求解思路
问题一要求给出具体的航班-登机口分配方案,尽可能多的分配航班到合适的登机口,并且在此基础上最小化被使用登机口的数量。显然这是一个最优化问题。本问题要求登机口使用数量最小,a、考虑转场航班时间不冲突,b、航班飞机类型满足等级口要求,c、且满足同一登机口的两架飞机之间的空挡间隔时间必须大于等于45分钟的条件下,对每个登机口分配尽可能多的转场航班,以达到登机口使用数量最小化。
在达到登机口使用数量最小的目标前,先考虑航班与登机口的匹配问题,航班能否分配到某个登机口受到三个因素影响。其一、同一登机口的转场航班对之间时间不能冲突,且空挡间隔时间必须大于等于45分钟。其二,转场航班分国际、国内两种,必须和分配的登机口的出发类型一致。其三、转场飞机分为宽体机和窄体机两种类型,必须和分配的登机口要求的机体类型相一致。
为使登机口使用数量最小,可间接考虑每个登机口能被分配尽可能多的航班数。每个登机口航班间的间隔时间尽可能的小,使得登机口获得最大的利用率。因此,可以以每个登机口转场的航班数尽可能的多为目标,建立目标函数,加上航班与每个登机口的匹配约束,以及相邻转场航班时间不冲突的时间约束条件下,可以求得最小登机口使用数量,以及登机口的航班详细分配方案。
对于目标函数中N为给定航班数,为定值,j为登机口编号 ,目标函数最大化意义为当j一定时,即针对某个登机口,遍历所有航班,值越大说明该登机口可以放置的航班数越多。对于每一个登机口放置航班都尽可能多,则放置完所有航班时,所需登机口数相对来说就越少。
按照机体类型对飞机和登机口各自分成宽体机和窄体机两类。对每种类型的转场飞机按照到达时间排序,其中19日到达、20日起飞的飞机莫认为20日0:00到达。航班分配时,有以下几条匹配准则:
(1)首先考虑机体类型匹配,飞机只能和机体类型相同的登机口进行匹配,比如宽体机分配时,只在机体类型要求为宽的登机口中进行选择。
(2)然后考虑国际国内航班,航班、登机口匹配时,按照单-单,单-多,多-多优先级从高到底的顺序选择。这种优先级选择可以较大程度提高登机口利用率,也能保证所有航班都能被分配到合适的登机口
(3)航班匹配时,在可以匹配的登机口中,优先选择登机口已安排的最后航班相邻时间间隔最短的登机口。这种时间优先选择可以减少登机口转场航班的相邻间隔时间,提高登机口的利用率。
(4)初始转场航班分配时,在机体类型和国际国内类型一致的登机口中,按照单-单,单-多,多-多优先级从高到低的顺序选择。可能会出现同时满足要求的同类型的登机口,比如都是宽体机,I-I的登机口,此时可随机选择。
分配思路:首先将飞机和登机口按照宽体机和窄体机进行分类,再把宽体机和窄体机的飞机按照到达时间各自排序,按照以上规则,遍历所有航班,对每个航班进行分配,直到所有航班分配完。
问题一求解算法
分析问题一中的模型,约束条件较多,规模适中,结构简单。但是,航班的初始分配具有随机性,可利用贪心算法求解先得到初始分配局部最优结果,再利用模拟退火算法进行优化,从而得到全局最优解。
贪心算法总是做出在当前看来是最优的选择,并从整体上加以考虑,它所做的选择只是在某种意义上的局部最优解。利用贪心算法对模型进行初步求解再进行优化,具有很强的合理性。模拟退火算法与初值无关,算法求得的解与初始解状态
S
0
S_{0}
S0(算法迭代起点)无关,且具有渐进收敛性,已在理论上被证明是一种以概率1收敛于全局最优的全局优化算法。模拟退火算法描述简单、使用灵活、运行效率高,且较少受初始条件限制。