VIO学习之公式推导——李代数篇

1、李代数公式基本性质:

1、扰动: R − 1 → ( R e x p ( ϕ ∧ ) ) − 1 = e x p ( ϕ ∧ ) − 1 R − 1 = e x p ( ϕ ∧ ) T R − 1 = e x p ( − ϕ ∧ ) R − 1 R^{-1} \to(Rexp(\phi^{\land}))^{-1}=exp(\phi^{\land})^{-1}R^{-1}=exp(\phi^{\land})^{T}R^{-1}=exp(-\phi^{\land})R^{-1} R1(Rexp(ϕ))1=exp(ϕ)1R1=exp(ϕ)TR1=exp(ϕ)R1
上面用到了反对称矩阵的性质
2、叉乘交换: a ⃗ × b ⃗ = − b ⃗ × a ⃗ \vec{a}\times\vec{b}=-\vec{b}\times\vec{a} a ×b =b ×a
3、右扰动对数近似: l n ( R e x p ( ϕ ∧ ) ) ∨ ≈ l n ( R ) ∨ + J r − 1 ( l n ( R ) ∨ ) ϕ ln(Rexp(\phi^{\land}))^{\vee}\thickapprox ln(R)^{\vee}+J^{-1}_{r}(ln(R)^{\vee})\phi ln(Rexp(ϕ))ln(R)+Jr1(ln(R))ϕ
其中 J r − 1 ( θ w ) = θ 2 c o t θ 2 I + ( 1 − θ 2 c o t θ 2 ) w w T + θ 2 w ∧ J^{-1}_{r}(\theta w)=\frac{\theta}{2}cot\frac{\theta}{2}I+(1-\frac{\theta}{2}cot\frac{\theta}{2})ww^{T}+\frac{\theta}{2}w^{\land} Jr1(θw)=2θcot2θI+(12θcot2θ)wwT+2θw
4、左扰动对数近似: l n ( e x p ( ϕ ∧ ) R ) ∨ ≈ J l − 1 ( l n ( R ) ∨ ) ϕ + l n ( R ) ∨ ln(exp(\phi^{\land})R)^{\vee}\thickapprox J^{-1}_{l}(ln(R)^{\vee})\phi + ln(R)^{\vee} ln(exp(ϕ)R)Jl1(ln(R))ϕ+ln(R)
5、 R p ∧ R T = ( R p ) ∧ Rp^{\land}R^{T}=(Rp)^{\land} RpRT=(Rp):证明请参考这里
6、SO(3)伴随性质: R e x p ( ϕ ∧ ) R T = e x p ( ( R ϕ ) ∧ ) Rexp(\phi^{\land})R^{T}=exp((R\phi)^{\land}) Rexp(ϕ)RT=exp((Rϕ))
7、SE(3)伴随性质: T e x p ( ϕ ∧ ) T T = e x p ( ( A d ( T ) ϕ ) ∧ ) Texp(\phi^{\land})T^{T}=exp((Ad(T)\phi)^{\land}) Texp(ϕ)TT=exp((Ad(T)ϕ))
其中
d ( T ) = [ R t ∧ R 0 R ] d(T)=\left[\begin{matrix} R&t^{\land}R\\0&R \end{matrix}\right] d(T)=[R0tRR]

2、常见雅可比(以自变量R举例)

1、旋转点的左扰动雅可比:
∂ ( R p ) ∂ R = lim ⁡ φ → 0 e x p ( φ ∧ ) R p − R p ∂ φ = lim ⁡ φ → 0 ( I + φ ∧ ) R p − R p ∂ φ = lim ⁡ φ → 0 φ ∧ R p ∂ φ = − ( R p ) ∧ φ ∂ φ = − ( R p ) ∧ \begin{aligned} \frac{\partial(Rp)}{\partial R} &=\lim_{\varphi \to 0}\frac{exp(\varphi^{\land})Rp-Rp}{\partial\varphi}\\ &=\lim_{\varphi \to 0} \frac{(I+\varphi^{\land})Rp-Rp}{\partial\varphi}\\ &=\lim_{\varphi \to 0}\frac{\varphi^{\land}Rp}{\partial\varphi}\\ &=\frac{-(Rp)^{\land}\varphi}{\partial\varphi}\\ &=-(Rp)^{\land} \end{aligned} R(Rp)=φ0limφexp(φ)RpRp=φ0limφ(I+φ)RpRp=φ0limφφRp=φ(Rp)φ=(Rp)
2、旋转点的右扰动雅可比:
∂ ( R p ) ∂ R = lim ⁡ φ → 0 R e x p ( φ ∧ ) p − R p ∂ φ = lim ⁡ φ → 0 R ( I + φ ∧ ) p − R p ∂ φ = lim ⁡ φ → 0 R φ ∧ p ∂ φ = − R p ∧ φ ∂ φ = − R p ∧ \begin{aligned} \frac{\partial(Rp)}{\partial R} &=\lim_{\varphi \to 0}\frac{Rexp(\varphi^{\land})p-Rp}{\partial\varphi}\\ &=\lim_{\varphi \to 0} \frac{R(I+\varphi^{\land})p-Rp}{\partial\varphi}\\ &=\lim_{\varphi \to 0}\frac{R\varphi^{\land}p}{\partial\varphi}\\ &=-\frac{Rp^{\land}\varphi}{\partial\varphi}\\ &=-Rp^{\land} \end{aligned} R(Rp)=φ0limφRexp(φ)pRp=φ0limφR(I+φ)pRp=φ0limφRφp=φRpφ=Rp
3、旋转连乘雅可比:
d l n ( R 1 R 2 ) ∨ d R 2 = lim ⁡ ϕ → 0 l n ( R 1 R 2 e x p ( ϕ ∧ ) ) ∨ − l n ( R 1 R 2 ) ∨ ϕ = lim ⁡ ϕ → 0 l n ( R 1 R 2 ) ∨ + J r − 1 ϕ − l n ( R 1 R 2 ) ∨ ϕ = J r − 1 ( l n ( R 1 R 2 ) ∨ ) \begin{aligned} \frac{dln(R_{1}R_{2})^{\vee}}{dR_{2}} &=\lim_{\phi \to 0}\frac{ln(R_{1}R_{2}exp(\phi^{\land}))^{\vee}-ln(R_{1}R_{2})^{\vee}}{\phi}\\ &=\lim_{\phi \to 0}\frac{ln(R_{1}R_{2})^{\vee}+J^{-1}_{r}\phi-ln(R_{1}R_{2})^{\vee}}{\phi}\\ &=J^{-1}_{r}(ln(R_{1}R_{2})^{\vee}) \end{aligned} dR2dln(R1R2)=ϕ0limϕln(R1R2exp(ϕ))ln(R1R2)=ϕ0limϕln(R1R2)+Jr1ϕln(R1R2)=Jr1(ln(R1R2))
其中用到了性质3

4、旋转连乘的雅可比:
d l n ( R 1 R 2 ) ∨ d R 1 = lim ⁡ ϕ → 0 l n ( R 1 e x p ( ϕ ∧ ) R 2 ) ∨ − l n ( R 1 R 2 ) ∨ ϕ = lim ⁡ ϕ → 0 l n ( R 1 R 2 R 2 T e x p ( ϕ ∧ ) R 2 ) ∨ − l n ( R 1 R 2 ) ∨ ϕ = lim ⁡ ϕ → 0 l n ( R 1 R 2 e x p ( ( R 2 T ϕ ) ∧ ) ) ∨ − l n ( R 1 R 2 ) ∨ ϕ = lim ⁡ ϕ → 0 l n ( R 1 R 2 ) ∨ + J r − 1 R 2 T ϕ − l n ( R 1 R 2 ) ∨ ϕ = J r − 1 ( l n ( R 1 R 2 ) ∨ ) R 2 T \begin{aligned} \frac{dln(R_{1}R_{2})^{\vee}}{dR_{1}} &=\lim_{\phi \to 0}\frac{ln(R_{1}exp(\phi^{\land})R_{2})^{\vee}-ln(R_{1}R_{2})^{\vee}}{\phi}\\ &=\lim_{\phi \to 0}\frac{ln(R_{1}R_{2}R^{T}_{2}exp(\phi^{\land})R_{2})^{\vee}-ln(R_{1}R_{2})^{\vee}}{\phi}\\ &=\lim_{\phi \to 0}\frac{ln(R_{1}R_{2}exp((R^{T}_{2}\phi)^{\land}))^{\vee}-ln(R_{1}R_{2})^{\vee}}{\phi}\\ &=\lim_{\phi \to 0}\frac{ln(R_{1}R_{2})^{\vee}+J^{-1}_{r}R^{T}_{2}\phi-ln(R_{1}R_{2})^{\vee}}{\phi}\\ &=J^{-1}_{r}(ln(R_{1}R_{2})^{\vee})R^{T}_{2} \end{aligned} dR1dln(R1R2)=ϕ0limϕln(R1exp(ϕ)R2)ln(R1R2)=ϕ0limϕln(R1R2R2Texp(ϕ)R2)ln(R1R2)=ϕ0limϕln(R1R2exp((R2Tϕ)))ln(R1R2)=ϕ0limϕln(R1R2)+Jr1R2Tϕln(R1R2)=Jr1(ln(R1R2))R2T

其中用到了性质3和性质6

5、旋转点逆的右扰动:
d R − 1 p d R = lim ⁡ φ → 0 ( R e x p ( φ ∧ ) ) − 1 p − R − 1 p φ = lim ⁡ φ → 0 e x p ( − φ ∧ ) R − 1 p − R − 1 p φ = lim ⁡ φ → 0 ( I − φ ∧ ) R − 1 p − R − 1 p φ = lim ⁡ φ → 0 − φ ∧ R − 1 p φ = lim ⁡ φ → 0 ( R − 1 p ) ∧ φ φ = ( R − 1 p ) ∧ \begin{aligned} \frac{dR^{-1}p}{dR}&=\lim_{\varphi \to 0}\frac{(Rexp({\varphi^{\land}}))^{-1}p-R^{-1}p}{\varphi}\\ &=\lim_{\varphi \to 0}\frac{exp(-\varphi^{\land})R^{-1}p-R^{-1}p}{\varphi}\\ &=\lim_{\varphi \to 0}\frac{(I-\varphi^{\land})R^{-1}p-R^{-1}p}{\varphi}\\ &=\lim_{\varphi \to 0}\frac{-\varphi^{\land}R^{-1}p}{\varphi}\\ &=\lim_{\varphi \to 0}\frac{(R^{-1}p)^{\land}\varphi}{\varphi}\\ &=(R^{-1}p)^{\land} \end{aligned} dRdR1p=φ0limφ(Rexp(φ))1pR1p=φ0limφexp(φ)R1pR1p=φ0limφ(Iφ)R1pR1p=φ0limφφR1p=φ0limφ(R1p)φ=(R1p)

6、连乘旋转点逆的右扰动
d l n ( R 1 R 2 − 1 ) ∨ d R 2 = lim ⁡ φ → 0 l n ( R 1 ( R 2 e x p ( φ ∧ ) ) − 1 ) ∨ − l n ( R 1 R 2 − 1 ) ∨ φ = lim ⁡ φ → 0 l n ( R 1 e x p ( − φ ∧ ) R 2 − 1 ) ∨ − l n ( R 1 R 2 − 1 ) ∨ φ = lim ⁡ φ → 0 l n ( R 1 R 2 − 1 R 2 e x p ( − φ ∧ ) R 2 − 1 ) ∨ − l n ( R 1 R 2 − 1 ) ∨ φ = lim ⁡ φ → 0 l n ( R 1 R 2 − 1 e x p ( − ( R 2 φ ) ∧ ) ) ∨ − l n ( R 1 R 2 − 1 ) ∨ φ = lim ⁡ φ → 0 l n ( R 1 R 2 − 1 ) ∨ − J r − 1 R 2 φ − l n ( R 1 R 2 − 1 ) ∨ φ = lim ⁡ φ → 0 − J r − 1 R 2 φ φ = − J r − 1 R 2 \begin{aligned} \frac{dln(R_{1}R^{-1}_{2})^{\vee}}{dR^{2}} &=\lim_{\varphi \to 0}\frac{ln(R_{1}(R_{2}exp(\varphi^{\land}))^{-1})^{\vee}-ln(R_{1}R^{-1}_{2})^{\vee}}{\varphi}\\ &=\lim_{\varphi \to 0}\frac{ln(R_{1}exp(-\varphi^{\land})R^{-1}_{2})^{\vee}-ln(R_{1}R^{-1}_{2})^{\vee}}{\varphi}\\ &=\lim_{\varphi \to 0}\frac{ln(R_{1}R^{-1}_{2}R_{2}exp(-\varphi^{\land})R^{-1}_{2})^{\vee}-ln(R_{1}R^{-1}_{2})^{\vee}}{\varphi}\\ &=\lim_{\varphi \to 0}\frac{ln(R_{1}R^{-1}_{2}exp(-(R_{2}\varphi)^{\land}))^{\vee}-ln(R_{1}R^{-1}_{2})^{\vee}}{\varphi}\\ &=\lim_{\varphi \to 0}\frac{ln(R_{1}R^{-1}_{2})^{\vee}-J^{-1}_{r}R_{2}\varphi-ln(R_{1}R^{-1}_{2})^{\vee}}{\varphi}\\ &=\lim_{\varphi \to 0}\frac{-J^{-1}_{r}R_{2}\varphi}{\varphi}\\ &=-J^{-1}_{r}R_{2} \end{aligned} dR2dln(R1R21)=φ0limφln(R1(R2exp(φ))1)ln(R1R21)=φ0limφln(R1exp(φ)R21)ln(R1R21)=φ0limφln(R1R21R2exp(φ)R21)ln(R1R21)=φ0limφln(R1R21exp((R2φ)))ln(R1R21)=φ0limφln(R1R21)Jr1R2φln(R1R21)=φ0limφJr1R2φ=Jr1R2
其中用到了性质3和性质6

  • 7
    点赞
  • 23
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值