一篇图文详解PID调参细节,实现PID入门到精通

读完本篇文章你的收获:

  • PID三个参数基本概念

  • 了解如何调节PID

  • 认识一个钻研技术的博主

先上效果图:

一、什么是PID

在工程中,如果我们要用单片机做一个温控系统,其系统组成一般如下:一个采集温度的ADC,一个输出温度的加热头以及一个用于运行控制算法的单片机,如果我们要维持温度为100度,在不加任何控制算法的情况下,我们可以通过简单的阈值判断法来控制温度,一个if判断语句,当采集到的温度大于100时,单片机控制加热头关闭,当采集的温度小于100度时,单片机则控制加热头开启,简单粗暴,但这样的控制方法,最终所展示出来的温度曲线是极其不稳定的,他会由于控制器件的灵敏程度、加热头的性能等等原因,导致最终的温度曲线会在目标周围震荡,达不到理想的控制效果,就像下图:实际曲线(黑线) 在 目标曲线(红线) 周围抖动

那如何才能维持实际曲线与目标曲线贴合,达到一个稳定的控制效果呢?

这里就引入了PID控制算法的概念,PID是 Proportion Integration Differentiation 的缩写,实际上他就是一个公式,由比例项(Proportion ),积分项(Integration ),微分项(Differentiation) 三个部分组成,具体形式就是下面的公式:

其中err(t)就是当前值和目标值的误差,PID的公式就是对这个误差分别进行比例、积分、微分处理后叠加输出,因为比例计算、积分计算、微分计算在数学公式上的计算定义不同,所以对应的项的输出特性和输入特性也有着不同,具体解释如下:

1. 比例系数

比例控制系数,实际上就是先简单的定义输入与输出的线性关系,假如我们输出控制量的值得范围在 100-1000,输入的err误差范围却在0.001-0.1;当误差为0.1的时候输出量需要到达到1000,这时我们就需要通过比例系数来构建输入与输出的线性关系

2. 积分系数

上一点我们分析了比例系数的含义,有小伙伴可能会好奇,比例系数加上后的效果其实和阈值判断原理没什么区别,确实是这样,只用上比例系数的效果和阈值判断没什么区别,但别忘了,PID后面还有I和D两项,其中I项的理解我们可以从积分的含义来理解,积分可以理解为在坐标平面上,由曲线、直线以及轴围成的曲形的面积值,这个曲线就是err(t)的函数,这个积分面积值就是代表过去一段时间的误差累计值,我们把这个累计值乘以系数进行变换后,叠加到输出上,就可以一定程度上消除历史误差对当前实际曲线的影响,提高系统的稳定性

3. 微分系数

微分的数学理解可以理解为当前误差曲线的斜率,他可以用来预测当前曲线的未来走势,对微分项的值进行处理后叠加,就可以预测当前值的未来趋势,提高系统对未来变化反应能力

二、PID调节方式

通过上一小节的分析,我们对PID的三个项有了一个简单的理解,但文字上的描述还是太抽象了,我以一个小车调速系统来做进一步讲解,结合实际现象来分析PID三个参数的实际作用,以及如何调这三个参数,用到的实验平台如下

  1. 平衡小车之家的主控板及电机

  2. 自己编写的调试上位机

控制系统图片:

上位机界面:

我们在使用PID的时候,单独只使用一个参数是没有意义的至少使用两个参数,并且P(比例项)是必须要有的,虽然PID有三个参数,但大多数情况下PID三个参数并不是都使用上的,一般会其中两个来组合使用,比如PI组合用于追求稳定的系统,PD组合用于追求快速响应的系统,当然PID用于即追求稳定又追求快速响应的系统,但是实际上PID参数越多越难调,而且许多情况下两个参数的效果已经足够了,所以我一般根据情况使用前两个,下面对这几个系统都做一个分析

1.PI系统调节

调节PI系统的第一步就是先调节P,由小到大依次调节,P的值可以很明显的在输出曲线体现出来,比如我先给P=0.05,系统反应如下,当P过小时,曲线呈现缓慢上升且最终值会明显低于目标值

当我们加大P到0.15时,我们可以看到实际曲线很快的接近目标值,但因为只有单纯P控制,所以有较大的过冲(过冲就是实际值达到目标值时刹不住车,冲出去了),但在他稳定的时候,实际曲线基本接近目标曲线

点击一篇图文详解PID调参细节,实现PID入门到精通查看全文

<think>好的,我现在需要帮助用户解决关于平衡小车PID参数调节的方法和技巧的问题。用户已经提供了一些参考资料,我需要先仔细理解这些内容,再结合自己的知识来组织回答。 首先,用户提到的引用[1]是关于PID调参图文详解,其中以小车调速系统为例,分析了三个参数的作用。引用[2]则具体展示了平衡小车的直立环和速度环的代码实现,包括PD控制和PI控制。这说明用户需要的是结合理论和实践的调参步骤,可能涉及直立环、速度环和转向环的参数调整。 接下来,我需要回忆PID控制的基本原理。PID由比例、积分、微分三个部分组成,每个部分对应不同的作用。比例项(P)响应当前误差,积分项(I)消除累积误差,微分项(D)抑制变化率。在平衡小车中,直立环通常使用PD控制,因为需要快速响应角度变化,而速度环可能需要PI控制来维持速度稳定。 用户的问题是关于方法和技巧,所以需要分步骤说明。比如,先调直立环,再调速度环,最后转向环。每个环节要说明参数的作用,调节顺序(如先P后D),以及如何观察现象进行调整。例如直立环的P过小会导致响应慢,无法平衡,过大则振荡;D参数则影响阻尼效果,防止抖动。 同时,要注意引用用户提供的资料。比如在直立环部分,引用[2]中的代码显示使用了Kp和Kd,这可以支持PD控制的说法。速度环部分,用户提到kp和ki,对应PI控制,需要解释积分项的作用,如消除稳态误差,但可能引起积分饱和,需要限幅。 此外,用户可能需要知道调参时的技巧,比如分步调试、参数范围的经验值、安全措施(防止电机过载)、工具使用(如蓝牙模块监控数据)等。这些内容需要条理清晰,用简洁的语言描述,避免过于技术化,让用户容易理解和操作。 最后,生成的相关问题需要与PID调节相关,可能涉及参数整定方法、常见问题处理、对比不同控制策略等。这有助于用户进一步探索。 总结回答结构: 1. 调参步骤:分直立环、速度环、转向环,按顺序调整。 2. 每个环节的参数作用和调整方法,结合引用内容。 3. 调参技巧:安全措施、工具使用、经验值参考。 4. 常见问题及解决方法,如振荡、响应慢等。 5. 生成相关问题,引导深入学习。 需要确保回答符合用户要求的中文,使用正确的LaTeX格式,行内公式用$...$,独立公式用$$...$$。例如,在解释PID公式时,使用$K_p$、$K_i$、$K_d$,并可能展示直立环的PD控制公式:$$u = K_p \cdot e + K_d \cdot \frac{de}{dt}$$。 检查是否有遗漏点,比如是否需要提到串级PID结构,或者平衡小车的动力学模型,但根据用户提供的引用,可能不需要太深入理论,而是侧重实践方法。因此,保持回答实用,步骤明确,技巧具体,即可满足用户需求。</think>### 平衡小车PID参数调节方法与技巧 平衡小车的PID参数调节是保证其稳定运行的核心步骤,需分步骤调试直立环、速度环和转向环。以下是具体方法与技巧: --- #### **1. 直立环(PD控制)** 直立环通过比例(P)和微分(D)项快速响应角度变化,保持车身直立。 **公式**: $$u_{\text{平衡}} = K_p \cdot (θ_{\text{实际}} - θ_{\text{目标}}) + K_d \cdot \frac{dθ}{dt}$$ **调参步骤**: - **先调$K_p$**: - **现象**:若$K_p$过小,小车无法抵抗倾斜,缓慢倒下;若$K_p$过大,车身剧烈振荡[^2]。 - **方法**:从较小值逐步增大,直到小车能快速响应倾斜但未振荡。 - **再调$K_d$**: - **现象**:若$K_d$过小,车身抖动;若$K_d$过大,响应迟钝,可能出现“僵硬”现象[^2]。 - **方法**:在$K_p$稳定的基础上增加$K_d$,抑制高频抖动。 **示例代码**(引用[2]直立环实现): ```c int Vertical_Ring_PD(float Angle, float Gyro) { float Bias = Angle - Mechanical_balance; // 偏差计算 return PID.Balance_Kp * Bias + Gyro * PID.Balance_Kd; // PD控制输出 } ``` --- #### **2. 速度环(PI控制)** 速度环通过比例(P)和积分(I)项维持小车速度稳定。 **公式**: $$u_{\text{速度}} = K_p \cdot (v_{\text{目标}} - v_{\text{实际}}) + K_i \cdot \int (v_{\text{目标}} - v_{\text{实际}}) dt$$ **调参步骤**: - **先调$K_p$**: - **现象**:$K_p$过小时,小车加速/减速缓慢;$K_p$过大时,速度波动明显。 - **方法**:逐步增大$K_p$,使小车能快速跟踪目标速度。 - **再调$K_i$**: - **现象**:$K_i$过小,稳态误差无法消除;$K_i$过大,积分饱和导致超调。 - **方法**:在$K_p$基础上加入$K_i$,消除静差,但需对积分项限幅[^2]。 --- #### **3. 转向环(可选,P控制)** 转向环通过比例项调整左右轮差速,实现转向控制: $$u_{\text{转向}} = K_p \cdot (θ_{\text{目标转向}} - θ_{\text{实际}})$$ **调参**:根据转向灵敏度调整$K_p$,避免转向过冲或迟钝。 --- #### **调参技巧** 1. **分步调试**:先调直立环,再调速度环,最后处理转向环。 2. **安全措施**:调试时固定小车或限制电机功率,防止失控。 3. **工具辅助**:通过蓝牙模块或上位机实时监控角度、速度等数据。 4. **经验参考**: - 直立环$K_p$范围:20~100,$K_d$范围:1~5。 - 速度环$K_p$范围:0.1~2,$K_i$范围:0.01~0.1。 --- #### **常见问题与解决** - **小车振荡**:增大$K_d$或减小$K_p$。 - **响应迟钝**:增大$K_p$或减小$K_d$。 - **静差累积**:检查速度环$K_i$是否过小或未积分限幅[^1]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值