ANFIS(自适应神经模糊推理系统,Adaptive Neuro-Fuzzy Inference System)

NFIS(自适应神经模糊推理系统)是由Jyh-Shing Roger Jang在1993年首次提出的,其详细描述发表在IEEE Transactions on Systems, Man, and Cybernetics上的论文《ANFIS: Adaptive-Network-based Fuzzy Inference System》。有感兴趣的可以去搜索下载该论文。

ANFIS(自适应神经模糊推理系统,Adaptive Neuro-Fuzzy Inference System)结合了模糊逻辑系统(Fuzzy Logic System, FLS)和人工神经网络(Artificial Neural Network, ANN)的优点,用于处理复杂的非线性问题。它的推导过程包括对模糊逻辑系统的参数进行优化,使其能够自适应地学习输入输出关系。

ANFIS会用到模糊if then规则、模糊等概念,如果对这些概念不熟悉的可以读我的上一篇文章。

1、 ANFIS的基本结构

ANFIS基于Takagi-Sugeno模糊推理系统(TSK FIS),其中模糊规则的输出是一个线性函数或常数。ANFIS通常具有以下五层结构,每一层代表了不同的功能:
在这里插入图片描述

  • 输入层(Layer 1):将外部输入数据传递到下一层,不进行任何计算。
  • 隶属度函数层(Layer 2):计算输入变量的隶属度(Membership Degree),即输入数据属于某个模糊集合的程度。每个节点是一个隶属度函数,通常使用高斯函数、三角函数或梯形函数。

  • 规则层(Layer 3):每个节点表示一个模糊规则,计算每条规则的激活强度(即规则权重)。规则的激活强度通常是所有输入隶属度的乘积。

  • 归一化层(Layer 4):归一化所有规则的激活强度,使其总和为1。

  • 输出层(Layer 5):计算每条规则的输出,并将其组合以得到最终输出。

2、ANFIS的推导过程

为了更好地理解ANFIS的工作原理,我们将通过一个两输入、单输出的简单模型进行推导,假设ANFIS具有两个输入 $ x_1$和 $ x_2$,输出为 $y $,模糊推理系统包含两条规则。

(1)假设规则

考虑以下两个模糊规则:

  • 规则1: 如果 $ (x_1 ) 是 ( A_1 ) 且 ( x_2 ) 是 ( B_1 ),那么输出 y_1 = p_1 x_1 + q_1 x_2 + r_1 $
  • 规则2: 如果 $ (x_1 ) 是 ( A_2 ) 且 ( x_2 ) 是 ( B_2 ),那么输出 y_2 = p_2 x_1 + q_2 x_2 + r_2 $

其中,$A_1, A_2 $ 和 B 1 , B 2 B_1, B_2 B1,B2是输入的模糊集合; p i , q i , r i p_i, q_i, r_i pi,qi,ri是线性参数,需要通过学习进行优化。

(2)推导过程

. 第一层:输入层(Layer 1)

输入数据 x 1 x_1 x1 和 $ x_2 $被传递给每个节点:
O i 1 = x i , i = 1 , 2 O_i^1 = x_i, \quad i = 1, 2 Oi1=xi,i=1,2

第二层:隶属度函数层(Layer 2)

  • 这一层的节点计算输入数据属于各自模糊集合的隶属度:
    O i 2 = μ A i ( x 1 ) , i = 1 , 2 O i + 2 2 = μ B i ( x 2 ) , i = 1 , 2 O_i^2 = \mu_{A_i}(x_1), \quad i = 1, 2 \\ O_{i+2}^2 = \mu_{B_i}(x_2), \quad i = 1, 2 Oi2=μAi
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值