ChatGPT | 修改RetrievalQA推荐答案的数量

文章讨论了在处理知识库中重复问题时,如何改进回复策略。通过调整RetrievalQA的设置,特别是增大搜索kwargs的k值,可以返回更多的相关结果,以提供更全面的答案。这种方法在处理如HTTP请求URL等在多个位置提及的主题时特别有用,确保接口文档的详细信息被充分覆盖。
摘要由CSDN通过智能技术生成

知识库经常遇到一个问题会在一个文件的多处或者多个文件出现,这时候如果只回答一个结果就欠佳,最理想的做法是模仿推荐功能,把合适的多个答案及其出处汇总给用户。

如图,一个接口文档里面提到多处“http请求URL”:

使用上面接口文档embedding之后,如果不对RetrievalQA做修改,默认是返回4个结果

 对RetrievalQA做修改的话,可以返回更多结果

 代码也好简单,重点是search_kwargs={"k":10} 这部分

qa_RTCS = RetrievalQA.from_chain_type(llm=openAiLLm,chain_type="stuff",
                                      retriever=db_RTCS.as_retriever(search_kwargs={"k":10}),#k表示 推荐结果条数,越大推荐越全面
                                      return_source_documents = True) #如果需要打印上下文才使用

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值