[AI]怎么计算中文被bert模型切分的tokens数量

目录

1. 中文BERT的Tokenization原理

2. 使用Hugging Face库计算Token数

3. 特殊情况处理

4. 注意事项


BERT模型中,计算中文文本的Token数需要根据具体的中文BERT分词器(Tokenizer)来处理。以下是详细的步骤和示例:

1. 中文BERTTokenization原理

  • 按字切分(Char-level:大多数中文BERT模型会将每个汉字视为一个独立的Token,例如“牛马”会被分成["", ""](2个Token)。
  • 结合子词切分(Subword:部分中文BERT模型可能对某些词进行子词拆分,例如生僻词“魑魅魍魉”可能被拆分为["", "##", "##", "##"](4个Token)。
  • 特殊标记:BERT会自动添加[CLS][SEP]等特殊标记,每个占1个Token。

2. 使用Hugging Face库计算Token

通过transformers库中的BERT分词器可以快速实现:

步骤

  1. 安装库

conda install transformers

  1. 加载中文BERT分词器
tokenizer = BertTokenizer.from_pretrained(r"D:\06_work_soft\AI\model\bge-large-zh-v1.5")
text = "英文空格会被保留为单独Token"
tokens = tokenizer.tokenize(text)
token_ids = tokenizer.encode(text, add_special_tokens=True)
print("Tokens:", tokens)
print("Token数(含特殊标记):", len(token_ids))
print("Token数(不含特殊标记):", len(tokens))

输出示例

Tokens: ['英', '文', '空', '格', '会', '被', '保', '留', '为', '单', '独', 'to', '##ken']

Token数(含特殊标记): 15

Token数(不含特殊标记): 13

3. 特殊情况处理

1)长文本截断

BERT最大支持512Token(含特殊标记)。若文本超长,需手动截断:

max_length = 512

truncated_text = tokenizer.encode(

    text,

    max_length=max_length,

    truncation=True,

    add_special_tokens=True

)

2)子词拆分

如果使用某些中文BERT变体(如BERT-wwm),可能遇到子词拆分:

text = "魑魅魍魉"

tokens = tokenizer.tokenize(text)  # 输出可能是['', '##', '##', '##']

print("Token:", len(tokens))     # 输出4

4. 注意事项

  • 模型差异:不同中文BERT模型(如bert-base-chinese、hfl/chinese-bert-wwm)的分词方式可能不同。
  • 空格处理:英文空格会被保留为单独Token(如"hello world"会被拆分为["hello", "world"]),但中文文本中的空格通常会被忽略。
  • 标点符号:中文标点(如句号、逗号)每个占1个Token。

总结

通过transformers库的BertTokenizer可以准确计算中文文本的BERT Token数。关键点:

  1. 中文默认按字切分,少数情况按子词拆分。
  2. 特殊标记(如[CLS]、[SEP])会额外增加2个Token。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值