WWW2019|图神经网络在社交推荐中的应用

本文介绍了如何运用图神经网络(GNNs)解决社交推荐系统的挑战,提出GraphRec框架。该框架能捕捉用户商品图中的交互和观点,建模异质社交关系,并对两个图进行联合建模。实验证明GraphRec在社交推荐中的有效性。
摘要由CSDN通过智能技术生成

Graph Neural Networks for Social Recommendation

Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, Dawei Yin

City University of Hong Kong, Michigan State University, The Hong Kong Polytechnic University, JD.com

http://ira.lib.polyu.edu.hk/bitstream/10397/81232/1/Fan_Graph_neural_networks.pdf

最近,图神经网络(GNNs)在图数据上的学习能力逐渐凸显,这种神经网络能够自然地将节点信息和拓扑结构集成起来。

GNN的这些优势在高级社交推荐中潜力巨大,社交推荐系统中的数据可以表示为用户之间的社交图以及用户商品图。其中学习用户和商品的隐含表示是关键。

然而,基于图神经网络构建社交推荐系统面临一些挑战。比如,用户商品图能够将交互和相关的观点进行编码;社交关系的强度具有异质性;用户出现在两个图中,即用户用户社交图以及用户商品图。

为了同时解决上述三个挑战,这篇文章提出一种用于社交推荐的新的图神经网络框架,GraphRec。具体而言,作者们给出一种具有一定原则的方法,该方法能够将用户商品图中的交互和观点同时捕捉到,同时对两个图进行建模,并且能够对异质的强度进行建模。

在两个真实数据集上的实验表明了GraphRec的有效性。

基于社交的推荐依赖以下两个子图

这篇文章的主要贡献如下

这篇文章所涉及的符号表示如下

问题描述如下

这篇文章的模型结构图示如下

商品空间的用户隐含因子表达形式如下

考虑用户对商品评分的特征表示可以借助MLP来完成,细节如下

目前比较流行的对商品进行聚合的操作是取平均

为了解决上述取平均带来的问题,可以考虑利用注意力机制来解决

其中注意力权重系数计算方式详情如下

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值