A Dual Heterogeneous Graph Attention Network to Improve Long-Tail Performance for Shop Search in E-Commerce
Xichuan Niu, Bofang Li, Chenliang Li, Rong Xiao, Haochuan Sun, Hongbo Deng, Zhenzhong Chen
Wuhan University, Alibaba Group
https://dl.acm.org/doi/pdf/10.1145/3394486.3403393
淘宝作为中国最大的电子商务平台,商铺搜索在其中的作用越来越重要。通过搜索店铺,用户可以快速找到目标商铺,其中包含比较全面的跟需求相关的商品。
随着用户和商铺的飞速增长,店铺搜索面临几个挑战
1 很多店铺名不能表达该店铺售卖何种商品,意即用户的查询和店铺名之间具有语意gap
2 由于缺少用户交互,对于长尾查询很难输出好的搜索结果,对于查询检索相关的长尾店铺也比较难
为了解决这两个关键挑战,作者们借助图神经网络。图神经网络在任意结构图数据中已经取得很多成功应用。
具体而言,作者们提出一种对偶异构图注意力网络,DHGAT,其中集成了双塔结构,其中还利用来自店铺搜索和商品搜索的用户交互数据。
首先,作者们针对店铺搜索上下文构建了异构图,同时利用了用户搜索行为、用户点击行为以及用户购买记录的一阶和二阶近邻。
然后,DHGAT基于注意力来利用查询和店铺的异构和同构近邻,进而强化查询和店铺的表示,这样可以缓解长尾现象。
此外,DHGAT通过组合相关商品名称,来丰富查询文本和店铺名的语义信息,可以缓解店铺名和用户查询的语义差距。为了增强图表示学习,作者们还利用正则邻居近邻误差,NPL,来增广DHGAT,进而显式学习图拓扑结构。整个框架以端到端的形式来训练。
离线评估和在线ab测试显示了DHGAT相对STOA方法的优势,尤其是长尾查询和店铺。
部分相关工作简介如下
下面是这篇文章的主要贡献
关于同质近邻,作者们按照以下思路来构建
作者们所提模型整体流程图示如下