KDD2020|阿里联合武大提出对偶异构图注意力网络DHGAT用于提升长尾商铺搜索效果...

本文介绍了一种名为DHGAT的对偶异构图注意力网络,用于改善电子商务平台上的长尾商铺搜索性能。DHGAT结合双塔结构,利用图神经网络处理用户交互数据,缓解语义差距和长尾问题。通过正则邻居近邻误差NPL增强学习,并在离线和在线测试中展现出优越性能。
摘要由CSDN通过智能技术生成

A Dual Heterogeneous Graph Attention Network to Improve Long-Tail Performance for Shop Search in E-Commerce

Xichuan Niu, Bofang Li, Chenliang Li, Rong Xiao, Haochuan Sun, Hongbo Deng, Zhenzhong Chen

Wuhan University, Alibaba Group

https://dl.acm.org/doi/pdf/10.1145/3394486.3403393

淘宝作为中国最大的电子商务平台,商铺搜索在其中的作用越来越重要。通过搜索店铺,用户可以快速找到目标商铺,其中包含比较全面的跟需求相关的商品。

随着用户和商铺的飞速增长,店铺搜索面临几个挑战

1 很多店铺名不能表达该店铺售卖何种商品,意即用户的查询和店铺名之间具有语意gap

2 由于缺少用户交互,对于长尾查询很难输出好的搜索结果,对于查询检索相关的长尾店铺也比较难

为了解决这两个关键挑战,作者们借助图神经网络。图神经网络在任意结构图数据中已经取得很多成功应用。

具体而言,作者们提出一种对偶异构图注意力网络,DHGAT,其中集成了双塔结构,其中还利用来自店铺搜索和商品搜索的用户交互数据。

首先,作者们针对店铺搜索上下文构建了异构图,同时利用了用户搜索行为、用户点击行为以及用户购买记录的一阶和二阶近邻。

然后,DHGAT基于注意力来利用查询和店铺的异构和同构近邻,进而强化查询和店铺的表示,这样可以缓解长尾现象。

此外,DHGAT通过组合相关商品名称,来丰富查询文本和店铺名的语义信息,可以缓解店铺名和用户查询的语义差距。为了增强图表示学习,作者们还利用正则邻居近邻误差,NPL,来增广DHGAT,进而显式学习图拓扑结构。整个框架以端到端的形式来训练。

离线评估和在线ab测试显示了DHGAT相对STOA方法的优势,尤其是长尾查询和店铺。

部分相关工作简介如下

48ea0794eeba6cf957ee0e09ee189af4.png

下面是这篇文章的主要贡献

143e5109e4656c6e8bb94cf30316893f.png

关于同质近邻,作者们按照以下思路来构建

3335fccbf7cf7b51d3003e12acacf213.png

作者们所提模型整体流程图示如下

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值