常数项级数
什么是常数项级数
就是每一项都是常数的无穷项累加
主要考点在敛散判断,
发散通常就是S = 无穷
直接展开计算
等比数列求和,有公式
性质
级数S收敛,kS也收敛
级数u和级数v收敛,u+v也收敛
不存在 + 存在 = 不存在
不存在+ 不存在 = 不确定
注意
1. 级数的敛散性只与后无穷项有关
2. 收敛级数加括号收敛且和不变
1. 级数加括号收敛,原级数不一定收敛,如 1-1+1-1…
2. 级数加括号后发散,原级数一定发散,部分发散,整体一定发散
级数收敛的必要条件
对1举个反例,如1/n的级数发散,但是极限lim un = 0
常数项级数审敛准则
3类审敛法
这部分考题的重点,分成3个部分,
1)是正项级数,就是每一项都大于0,
有4个办法,先用34,比值法和根值法,再用12比较判别法和比较法的极限形式(需要缩放,不好做)
34方法的思想是等比数列的类比
12方法,大收小也收,小散大就散,2和1差不多意思,(2)的①同敛散转换用的挺多
常用的缩放结论:
p级数
1/n发散很经典
等比求和
2)交错级数,就是一个正数,一个负数,交错的级数,
用莱布尼茨准则,数列单调 且 lim un=0,则交错级数收敛
注意反之不成立
3)任意项级数
用加绝对值的方法,转换成正项级数,若绝对值|S|收敛,则S必收敛,因为大收敛小必收敛
或者利用条件收敛,条件收敛的正/负项构成的级数一定发散,
这是因为S收敛了,而|S|发散,一种特殊情况是S是一正一负抵消了,单独把正项和负项提出来则必发散
推导:un±|un| => 收敛±发散 = 发散
例题
A) an=bn是一个交错级数 -1n/√n, anbn = 1/n发散
B) an=bn=1/n, anbn = 1/n2 收敛
C)正确
∑|bn|收敛,lim an=0,an有界,|an| <= M,
|anbn| <= M|bn|, M|bn|收敛,则|anbn|收敛
∑|an|收敛,正项级数收敛,则lim |an| -> 0(0 <=lim |an|< 1),
an2 <= |an|,则∑an2收敛
有两个结论,
∑|bn|收敛,lim an ->0,则∑|anbn|收敛
∑|an|收敛,则 ∑an2收敛
D)an=bn=1/n,an2bn2收敛
A 正确定理,级数收敛,级数加括号也收敛,反之不成立,BD错误
C,un若为交错级数前项加后项抵消,改成减必发散
幂级数
定义
什么是幂级数?
类比一下泰勒展开,泰勒展开最后高阶无穷小代替,而幂级数是n->无穷的累加和
幂级数定理
1) 阿贝尔定理
幂级数S(x)的收敛半径和收敛域的由来
2)幂级数收敛性质只有下面三种可

收敛半径、收敛区间和收敛域
注意:
条件收敛则一定是收敛区间的一个端点,刚好是一个临界状态,∑anxn收敛,∑|anxn|发
求收敛半径的两个方法,比值法和根值法,这和?什么很像

幂级数性质
1)有理运算性质:加减乘除
R是R1R2中小的那个
anxn·bnxn的系数是有规律的,注意xn的系数:a的i从0到n,b的j从n到0,aibj累加
分析性质,
连续性:收敛区间内连续
可导性和可积性:级数项乘一个或者除一个数不影响收敛区间
例题
求收敛半径就两个求法,比值和根值,注意使用系数算
要求收敛区间,先求收敛半径,收敛区间=(x0-R,x0+R)
难点:判断端点处,x=常数R,变成常数项级数,判断的收敛性,用3类审敛法(正项,交错,任意)
系数一样中心不一样 => 收敛半径一样,收敛域平移
这题考的是阿贝尔定理和收敛域平移
破题关键在于:幂级数定理(条件收敛的临界状态),还有一个思想要掌握是幂级数在x=x0处是常数项级数
级数an在x=1时条件收敛,则an(x-1)在x=2的时候条件收敛,则2是一个端点,x=1又是中心,可以求出收敛区间(0,2)
函数的幂级数展开
定义
函数表示成幂级数形式,一种趋近的思想,化曲为直
展开幂级数的两种方法:
直接法,用下面的定义
间接法,用7个常用公式去凑
幂级数展开的必要条件是fx任意阶可导,
展开中心x0的改变会改变收敛区间,展开中心与收敛半径的关系为(x0-R,x0+R)
定理
展开式唯一
泰勒级数
这个其实就是泰勒公式,很熟悉的形式
fx任意阶可导 => 泰勒级数在收敛区间内收敛与fx 【充要条件】是 lim Rn = 0
常用展开式(背

例题(幂级数展开
分母因式分解,1/2-x的处理是提一个1/2 分母化成1-x的形式
老样子,分母因式分解拆项,分母提项化成 1/1±x的形式
求导数的级数展开,在积分
例题(级数求和
求收敛域,先求半径,判断端点
已有公式1/1-x转换=∑xn,原式 = x∑nxn-1,x∑(xn)’
已有公式 1/1+x = (-1)n-1 xn
分母拆项,
常用结论: ∑xn/n = - ln(1-x)
提一个x出去,累加项的导数S’x变成某个函数的级数,两边求积分,注意不是不定积分,
S‘x求积分Sx是变上限积分∫x->0 S’t dt
傅里叶级数
傅里叶级数主要研究周期函数,fx用级数来表示
主要记住an bn和傅里叶级数的写法
an和bn就只差了cos和sin,a是cos,b是sin
狄利克雷收敛定理
fx在[-pai,pai]连续且只有有限个第一类间断点,且最多只有有限个极值点,则fx在区间里处处收敛。且有3个收敛公式:连续点,间断点,端点
函数展开公式
周期2Π省略,l改成Π即可
用到了积分性质的奇偶性
奇延拓和偶延拓
例题(狄利克雷收敛定理
狄利克雷收敛定理,1是端点,S(1)收敛于f(-1+)+f(1-)/2
函数展开只有bn,an = ∫ fxcosnx = 0,说明fx是奇函数,Sx从题也可以看出是奇函数,S(-1/2) = -S(1/2),用狄利克雷收敛定理Sx=fx
例题(函数展开傅里叶级数
周期为2,2l=2,l=1,
函数在区间上连续,且为偶函数,
求an、a0即可,bn=0,根据定义写出傅里叶级数
fx写成傅里叶级数,当x=x0时化成某些特殊的常数项级数
展开3部分走,
定周期T=2l,确定l,
求an、a0、bn
写级数展开
这里还考了奇偶延拓,展开成余弦,说明fx是偶函数,偶延拓