一,收敛级数的分配率
- 若
收敛,则
也收敛,且
- 推论:若
,则
和
具有相同的敛散性
二,收敛级数的结合律
- 若
和
收敛,则
也收敛,且
- 推论1:若
收敛,
发散,则
必发散
- 推论2:若
发散,
发散,则
未必发散
三,收敛级数的线性性质
四,前有限项与敛散性无关
- 改变(减少或增加)级数的有限项,不会改变该级数的敛散性
- 推论:决定级数敛散性的不是前有限项,而是级数的余项
五,收敛级数内部的结合律
- 收敛级数按原顺序,任意加括号后,所得的级数仍收敛,且和不变
- 发散级数内部没有结合律,如图:
六,级数收敛的充分不必要条件
- 若
收敛,则通项趋于0:
- 推论:若
,则
发散