Mantel Test分析与绘图

目录

1.前言

2.步骤

3.在R语言中,除了mantel_test函数,还有其他几个工具和方法可以用于进行Mantel Test分析:

4.利用ggcor包在进行Mantel Test分析

5.使用ggcor包进行Mantel Test分析

6.两个距离矩阵的行名和列名不完全相同的处理方法


1.前言

Mantel Test是一种统计方法,用于检验两个矩阵之间的相关性。在生态学研究中,它常用来分析群落距离矩阵(比如基于Bray-Curtis距离)和环境变量距离矩阵(如pH值、温度或地理位置)之间的相关性。如果Mantel Test的相关性系数较大,且p值较小,这通常意味着环境因子对微生物群落的影响较大 。

2.步骤

在R语言中,进行Mantel Test分析和绘图可以通过以下步骤完成:

  1. 加载必要的R包,例如linkETtidyverseRColorBrewer等 。
  2. 准备数据,通常是两个距离矩阵,它们应该有相同的行数和样本标识。
  3. 使用mantel_test函数进行Mantel Test分析,该函数可以计算两个矩阵之间的相关性,并给出r值和p值 。
  4. 对结果进行处理,比如将r值和p值分为不同的区间,以便于后续可视化 。
  5. 使用qcorrplot函数绘制相关性热图,并使用geom_squaregeom_couple添加Mantel Test的结果到热图上 。
  6. 根据需要调整图表的美观性,包括颜色、大小、标签等 。

例如,下面的R代码展示了如何使用linkET包进行Mantel Test分析并绘制热图和网络图 :

library(linkET)
library(tidyverse)
library(RColorBrewer)

# 假设varechem和varespec是两个已经准备好的距离矩阵
data("varechem", package = "vegan")
data("varespec", package = "vegan")

# 进行Mantel Test分析
mantel <- mantel_test(varespec, varechem) %>%
  mutate(rd = cut(r, breaks = c(-Inf, 0.2, 0.4, Inf), labels = c("< 0.2", "0.2 - 0.4", ">= 0.4")),
         pd = cut(p, breaks = c(-Inf, 0.01, 0.05, Inf), labels = c("< 0.01", "0.01 - 0.05", ">= 0.05")))

# 绘制热图和网络图
correlate(varechem) %>%
  qcorrplot(type = "lower", diag = T) +
  geom_square() +
  geom_couple(aes(colour = pd, size = rd), data = mantel, curvature = 0.1) +
  scale_fill_gradientn(colours = RColorBrewer::brewer.pal(9, "RdBu")) +
  scale_size_manual(values = c(0.5, 1, 2)) +
  scale_colour_manual(values = color_pal(3)) +
  labs(fill = "Pearson's correlation",
       size = "Mantel's r value",
       colour = "Mantel's p value")

另一组R代码示例:

rm(list=ls())#好习惯,确保有干净的 R 环境
# setwd("C:/Users/Desktop/take")
library(linkET)
library(ggplot2)
library(ggtext)
library(dplyr)
library(RColorBrewer)
library(cols4all)
library(tidyverse)

data("varechem", package = "vegan")
data("varespec", package = "vegan")

#计算环境因子相关性系数:
cor2 <- correlate(varechem)
corr2 <- cor2 %>% as_md_tbl() ##在linkET包中,as_md_tbl()可以将相关性矩阵转换成一个"md"表格,这是linkET特有的数据结构,用于存储和操作相关性数据
write.csv(corr2, file = "pearson_correlate(env&env).csv", row.names = TRUE)

head(corr2)
#mantel test:
mantel <- mantel_test(varespec, varechem,
                      mantel_fun = 'mantel', #支持4种:"mantel"使用vegan::mantel();"mantel.randtest"使用ade4::mantel.randtest();"mantel.rtest"使用ade4::mantel.rtest();"mantel.partial"使用vegan::mantel.partial()
                      spec_select = list(spec01= 1:1,
                                         spec02=5:5,
                                         spec03 = 7:7
                      )) #这里分组为随机指定,具体实操需按自己的实际数据分组
head(mantel)
write.csv(mantel, file = "mantel_result(bio&env).csv", row.names = TRUE)

#对mantel的r和P值重新赋值(设置绘图标签):
mantel2 <- mantel %>%
  m
Mantel test是一种用于计算两个相关性矩阵之间相关性的统计检验方法,它用于判断两个矩阵之间的关联是否存在显著性。mantel test python包则是用于在Python编程语言中进行Mantel test的工具包。 mantel test python包通常提供了实现Mantel test所需的函数和方法。使用这个工具包,我们可以将两个相关性矩阵作为输入,并计算它们之间的相关性,并给出相关性的检验结果。根据结果,我们可以判断两个矩阵之间的相关性是否具有统计显著性。 在使用mantel test python包时,通常需要先导入相应的库,例如scipy和numpy。然后,我们可以使用这些库中的函数来计算相关性矩阵,并使用mantel test函数来执行Mantel test。根据具体的使用情况,我们可以指定两个矩阵的类型(如距离矩阵或相关系数矩阵)、相关性的计算方法以及显著性水平。 值得注意的是,mantel test python包不仅仅适用于基础的Mantel test,它还常常提供了其他变种的相关性检验方法,如Partial Mantel test和Pearson Mantel test等。这些方法可以处理更复杂的相关性分析问题,增加了在实际问题中的应用范围。 总结来说,mantel test python包是用于在Python中进行Mantel test的工具包,它提供了计算相关性矩阵并执行相关性检验的函数和方法。使用mantel test python包,我们可以判断两个矩阵之间的相关性是否显著,并进行更复杂的相关性分析
评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值