关于神经网络中Backbone,Neck,Bottleneck,Head的理解

摘要

梳理了一些长见的名词,方便大家够好的理解论文和Ai方向的文章。

1. Backbone

骨干网络或者说是主干网络,指的是提取特征的网络,其作用就是提取图片中的信息,共后面的网络使用。这些网络经常使用的是resnet VGG等,而不是我们自己设计的网络,因为这些网络已经证明了在分类等问题上的特征提取能力是很强的。在用这些网络作为backbone的时候,都是直接加载官方已经训练好的模型参数,后面接着我们自己的网络。让网络的这两个部分同时进行训练,因为加载的backbone模型已经具有提取特征的能力了,在我们的训练过程中,会对他进行微调,使得其更适合于我们自己的任务。

2. Neck

是放在backbone和head之间的,是为了更好的利用backbone提取的特征。

3. Bottleneck

瓶颈的意思,通常指的是网网络输入的数据维度和输出的维度不同,输出的维度比输入的小了许多,就像脖子一样,变细了。Bottleneck有个参数ratio,经常设置为4,比如输入进来的是channel是512,然后,变成128,再变成512输出。

4. Head

head是获取网络输出内容的网络,利用之前提取的特征,head利用这些特征,做出预测。

5.GAP或者avgpool:

全局平均池化(Global Average Pool),就是将某个通道的特征取平均值,在pytorch中,经常使用AdaptativeAvgpoold(7),这个代表自适应性全局平均池化,例如VGG:

 self.avgpool = nn.AdaptiveAvgPool2d((1, 1))

6.Embedding

深度学习方法都是利用使用线性和非线性转换对复杂的数据进行自动特征抽取,并将特征表示为“向量”(vector),这一过程一般也称为“嵌入”(embedding)

在这里插入图片描述

### YOLOv8 网络架构详细说明 #### 主干网络 (Backbone) 主干网络作为模型的基础部分,承担着从输入图像中提取特征的任务。这些被提取出来的特征对于后续的目标检测至关重要[^1]。YOLOv8 的主干网络借鉴了 CSPDarknet 结构的设计理念,这种设计不仅提高了计算资源的利用效率,还增强了特征表达的能力。 #### 颈部结构 (Neck) 颈部连接主干网和头部,其主要功能是对来自主干网的不同层次特征图进行融合处理。在 YOLOv8 中,颈部采用了一系列特定模块如 C2f 和 SPPF 来增强多尺度上下文信息的学习能力,从而提高最终输出的质量[^2]。 #### 头部组件 (Head) 头部负责基于前面两者的输出来进行具体的预测工作。它包含了 Detect 模块用于生成候选区域并对其进行分类与回归操作。值得注意的是,YOLOv8 实现了一个重要的转变——即转向无锚点机制下的目标检测方法,这种方法简化了训练流程的同时也加快了推理速度。 #### 关键模块解析 - **卷积层 Conv**: 卷积运算构成了整个框架的核心组成部分之一,通过局部感受野捕捉空间上的模式。 - **瓶颈单元 Bottleneck**: 此类残差学习单位有助于缓解深层神经网络中存在的梯度消失问题,并促进了更深层次的信息流动。 - **C2f 组件**: 它是一种特殊的跨阶段部分连接方式,可以有效减少参数量而不损失性能表现。 - **SPPF 层(Spatial Pyramid Pooling with Fast Implementation)**: 利用金字塔池化策略获取不同大小的感受视野,进而提升对各种尺寸对象的理解力。 - **Detect 模块**: 负责执行最后一步的对象位置估计及其类别归属判断任务;得益于去除了传统意义上的先验框设定,使得该环节变得更加高效简洁。 ```python import torch.nn as nn class Backbone(nn.Module): def __init__(self): super(Backbone, self).__init__() # Define layers following the CSPDarknet structure class Neck(nn.Module): def __init__(self): super(Neck, self).__init__() # Implement feature fusion using modules like C2f and SPPF class Head(nn.Module): def __init__(self, num_classes=80): super(Head, self).__init__() # Design detection head without anchor boxes for improved efficiency ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI浩

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值