【昇腾故障案例-安装部署】Ascend 310P 容器内算力切分挂起视频流编解码业务进程npu-smi故障

问题现象描述

硬件配置:Atlas800-3000设备,Ascend 310P推理卡

问题现象:Ascend 310P推理卡在算力切分1/2分容器场景下,运行单进程12路视频解码业务,在容器内运行业务过程中Ctrl+Z挂起业务后,出现npu-smi info出现查询不到芯片的现象。

原因分析

关键过程:排查视频流业务下发和npu-smi的调用流程,业务进程挂起后内核态还在继续运行,排查内核态流程发现部分接口没有得到响应导致npu-smi info查询失败。

根本原因分析:容器内算力切分场景下使用ctrl + z命令挂起视频编解码流业务进程后,内核态的资源没有被处理完,可能导致同个芯片的信号量一直被占用,一直被阻塞。

解决措施

结论:当前容器内算力切分场景下,还无法直接使用挂起命令将业务临时挂起,如果需要杀死进程要使用ctrl + c命令。

解决方案:

  1. 可以使用fg或者bg命令将进程重启恢复到前台继续运行进行恢复;
  2. 如果希望杀掉业务流进程,使用ctrl + c命令或者kill命令杀死对应进程,不用ctrl + z命令进行挂起。
### 安装和配置 DeepSeek-R1 在昇騰 AI 加速卡上的指南 #### 工具链准备 为了使 DeepSeek-R1 能够运行于昇騰加速卡之上,需先准备好相应的开发环境。这包括但不限于安装 MindStudio 和 ATC (Ascend Toolkit Compiler),这些工具对于模型编译与优化至关重要[^1]。 #### 环境搭建 确保操作系统支持昇騰设备驱动程序,并按照官方文档完成驱动安装。接着下载对应版本的 Ascend SDK 以及 CANN (Compute Architecture for Neural Networks) 平台软件包来构建完整的开发平台。 #### 模型转换 利用 ATC 命令行工具可以将预训练好的 TensorFlow 或 PyTorch 格式的 DeepSeek-R1 模型文件(.pb/.onnx)转化为适用于昇騰硬件执行的离线模型(*.om): ```bash atc --model=deepseek_r1.onnx --framework=5 --output=deepseek_r1 --soc_version=Ascend310P ``` #### 应用部署 编写 Python/C++ 推理应用程序调用推理接口加载上述生成的*.om 文件,在实际应用中实现目标检测等功能。下面是一个简单的Python代码片段用于展示如何初始化并启动一次推理过程: ```python from atlas_utils.presenteragent import presenter_channel import acl import numpy as np def init_resource(): ret = acl.init() if ret != ACL_SUCCESS: print("acl.init failed") return None # Initialize other resources... if __name__ == '__main__': channel = presenter_channel.open('localhost:7008') model_path = './deepseek_r1.om' input_data = np.random.randn(1, 3, 224, 224).astype(np.float32) # Perform inference using the loaded OM file and process results... channel.close() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值