1. 引言

2. 雅克比矩阵

3. 机器人雅克比矩阵

4. 求解雅克比矩阵

4.1 几何法

# 2. 雅克比矩阵

$d_f=\dot{f}(t_{0})d_t$

$f(t)=\begin{bmatrix} f_1(t)\\ f_2(t)\\ ...\\ f_n(t) \end{bmatrix}$

$d_f=\begin{bmatrix} d_{f1}\\ d_{f2}\\ ...\\ d_{fn} \end{bmatrix}=\begin{bmatrix} \dot{f_1}(t_{0})\\ \dot{f_2}(t_{0})\\ ...\\ \dot{f_n}(t_{0}) \end{bmatrix}d_t$

$J_0=\begin{bmatrix} \dot{f_1}(t_{0})\\ \dot{f_2}(t_{0})\\ ...\\ \dot{f_n}(t_{0}) \end{bmatrix}$

$x=\begin{bmatrix} x_0\\ x_1\\ ...\\ x_m \end{bmatrix}$

$d_f=\begin{bmatrix} d_{f1}\\ d_{f2}\\ \vdots \\ d_{fn} \end{bmatrix}=\begin{bmatrix} \frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} & \cdots & \frac{\partial f_{1}}{\partial x_{m}}\\ \frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}} & \cdots & \frac{\partial f_{2}}{\partial x_{m}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_{n}}{\partial x_{1}} & \frac{\partial f_{n}}{\partial x_{2}} & \cdots & \frac{\partial f_{n}}{\partial x_{m}} \end{bmatrix}\begin{bmatrix} d_{x1}\\ d_{x2}\\ \vdots \\ d_{xm} \end{bmatrix}$

$J_{0}=\begin{bmatrix} \frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} & \cdots & \frac{\partial f_{1}}{\partial x_{m}}\\ \frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}} & \cdots & \frac{\partial f_{2}}{\partial x_{m}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_{n}}{\partial x_{1}} & \frac{\partial f_{n}}{\partial x_{2}} & \cdots & \frac{\partial f_{n}}{\partial x_{m}} \end{bmatrix}$

$d_f=J_0\cdot d_x$

# 3. 机器人雅克比矩阵

1. DH参数可以把关节角映射为末端执行器的位置和姿态
2. 雅克比矩阵可以把关节转速映射为笛卡尔空间的速度和角速度

DH参数和雅克比矩阵可以认为是机器人正运动学的基础。

# 4. 求解雅克比矩阵

## 4.1 几何法

$v_e=\dot{q_i}z_{i-1}\times \overrightarrow{O_{i-1}E}$

$\omega_e=\dot{q_i} \cdot z_{i-1}$

$\begin{bmatrix} v_e\\ \omega_e \end{bmatrix}=\begin{bmatrix} z_{i-1} \times \overrightarrow{O_{i-1}E}\\ z_{i-1} \end{bmatrix}\cdot \dot{q_i}=J^{i}\cdot\dot{q_i}$

$J^i=\begin{bmatrix} z_{i-1} \times \overrightarrow{O_{i-1}E}\\ z_{i-1} \end{bmatrix}$

$J^i=\begin{bmatrix} z_{i-1}\\ 0 \end{bmatrix}$

$\begin{bmatrix} v_e\\ \omega_e \end{bmatrix}=\begin{bmatrix} J^1& J^2& J^3& J^4& J^5& J^6 \end{bmatrix}\begin{bmatrix} \dot{q_1}\\ \dot{q_2}\\ \dot{q_3}\\ \dot{q_4}\\ \dot{q_5}\\ \dot{q_6} \end{bmatrix}=J \cdot \dot{q}$

$J^i=\begin{cases} \begin{bmatrix} z_{i-1} \times \overrightarrow{O_{i-1}E}\\ z_{i-1} \end{bmatrix} & \text{ if } revolute \ joint \\ \begin{bmatrix} z_{i-1}\\ 0 \end{bmatrix}& \text{ if } prismatic \ joint \end{cases}$

# 5. 总结

• 点赞 1
• 评论
• 分享
x

海报分享

扫一扫，分享海报

• 收藏
• 手机看

分享到微信朋友圈

x

扫一扫，手机阅读

• 打赏

打赏

hitgavin

你的鼓励将是我创作的最大动力

C币 余额
2C币 4C币 6C币 10C币 20C币 50C币
• 一键三连

点赞Mark关注该博主, 随时了解TA的最新博文
08-13 1116

11-09
07-19
11-09
11-24 2272
10-24 3306
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客