(踩坑日记)Ollama部署本地微调后的GGUF模型

一、踩坑日记

在这里插入图片描述
根据Llamafactory官方的方法来做会报错,如下:
后面发现是Modelfile文件命名错误
在这里插入图片描述

后面网上找资料发现是modelfile文件命名的问题

二、正确的做法
1、创建一个文件夹(或者在原来文件也行,)用于存放GGUF文件和modelfile文件
在这里插入图片描述

2、用VIM创建的modelfile文件,我这里命名为sat2.modelfile,填入以下内容:

FROM testmodel.gguf
#设置temperature为1,[更高的数值回答更加发散,更低的数值回答更加保守]
PARAMETER temperature 0.7  //自由度
 
 //提示词模板
TEMPLATE """{{ if .System }}<|start_header_id|>system<|end_header_id|>
 
{{ .System }}<|eot_id|>{{ end }}{{ if .Prompt }}<|start_header_id|>user<|end_header_id|>
 
{{ .Prompt }}<|eot_id|>{{ end }}<|start_header_id|>assistant<|end_header_id|>
 
{{ .Response }}<|eot_id|>"""
PARAMETER stop "<|start_header_id|>"
PARAMETER stop "<|end_header_id|>"
PARAMETER stop "<|eot_id|>"
PARAMETER stop "<|reserved_special_token"
 
 
#设置tokens限制
PARAMETER num_ctx 4096
PARAMETER repeat_penalty 1.5
PARAMETER repeat_last_n 1024
 
#设置系统级别的提示词
SYSTEM 现在你是xxxx有限公司矿建领域的个人助理,我是一个矿山建设领域的工程师,你要帮我解决我的专业性问题。
MESSAGE user 你好
MESSAGE assistant 我在,我是xxxx个人助理,请问有什么我可以帮助您的嘛?

3、在之前的文件夹中打开终端,输入

ollama create sat2 -f ./sat2.modelfile

![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/1dac1f9e26c74d31b2ec9df957425997.png在这里插入图片描述
下面是ollama存放model的文件夹
在这里插入图片描述

4、最后运行一下你的模型

ollama run sat2:latest

在这里插入图片描述
ok结束

### 部署经过LoRA微调Ollama模型 为了成功部署经过LoRA微调Ollama模型,需遵循特定流程以确保模型能够被有效利用。此过程涉及创建一个新的`Modelfile`文件并定义其模板结构。 #### 创建新的`Modelfile` 在已量化好的模型所在的目录下建立名为`Modelfile`的新文件。该文件用于指定如何加载和配置微调后的模型。具体操作如下: ```bash touch Modelfile ``` 编辑`Modelfile`的内容,使其指向已经完成量化的基础模型路径,并设置输入输出格式。对于基于指令的应用场景,可以采用以下模板[^4]: ```plaintext FROM /path/to/quantized_model.gguf TEMPLATE "[INST] {{ .Prompt }} [/INST]" ``` 这里,`/path/to/quantized_model.gguf`应替换为实际的量化模型文件路径;而模板部分则规定了交互时使用的对话框样式。 #### 注册新模型 通过命令行工具注册刚刚准备好的微调模型Ollama环境中。假设希望给这个新版本命名为`panda_lora`,那么执行下面这条命令即可完成创建动作: ```bash ollama create panda_lora -f ./Modelfile ``` 此时,`panda_lora`即代表了一个由原始Ollama模型经LoRA技术优化后得到的新实例,可以直接供后续测试或生产环境使用。 #### 测试与验证 最后一步是对刚部署成功的模型进行简单的功能性和性能上的检验。可以通过向API发送请求的方式来进行初步评估,确认一切正常工作后再考虑更广泛的应用推广。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值