张宇1000题概率论与数理统计 第九章 参数估计与假设检验

目录

A A A

6.设 x 1 , x 2 , ⋯   , x n x_1,x_2,\cdots,x_n x1,x2,,xn是来自总体 X ∼ N ( μ , σ 2 ) X\sim N(\mu,\sigma^2) XN(μ,σ2) μ , σ 2 \mu,\sigma^2 μ,σ2都未知)的简单随机样本的观测值,则 σ 2 \sigma^2 σ2的最大似然估计值为(  )。
( A ) 1 n ∑ i = 1 n ( x i − μ ) 2 ; (A)\cfrac{1}{n}\displaystyle\sum^n_{i=1}(x_i-\mu)^2; (A)n1i=1n(xiμ)2;
( B ) 1 n ∑ i = 1 n ( x i − x ‾ ) 2 ; (B)\cfrac{1}{n}\displaystyle\sum^n_{i=1}(x_i-\overline{x})^2; (B)n1i=1n(xix)2;
( C ) 1 n − 1 ∑ i = 1 n ( x i − μ ) 2 ; (C)\cfrac{1}{n-1}\displaystyle\sum^n_{i=1}(x_i-\mu)^2; (C)n11i=1n(xiμ)2;
( D ) 1 n − 1 ∑ i = 1 n ( x i − x ‾ ) 2 . (D)\cfrac{1}{n-1}\displaystyle\sum^n_{i=1}(x_i-\overline{x})^2. (D)n11i=1n(xix)2.

  在 μ \mu μ未知时, σ 2 \sigma^2 σ2的最大似然估计值为 1 n ∑ i = 1 n ( x i − x ‾ ) 2 \cfrac{1}{n}\displaystyle\sum^n_{i=1}(x_i-\overline{x})^2 n1i=1n(xix)2,故选 ( B ) (B) (B)。(这道题主要利用了最大似然估计求解

8.设 X ‾ \overline{X} X为来自总体 X ∼ N ( μ , σ 2 ) X\sim N(\mu,\sigma^2) XN(μ,σ2) σ 2 \sigma^2 σ2未知)的一个简单随机样本的样本均值,若已知在置信水平 1 − α 1-\alpha 1α下, μ \mu μ的置信区间长度为 2 2 2,则在显著性水平 α \alpha α下,对假设检验问题 H 0 : μ = 1 , H 1 : μ ≠ 1 H_0:\mu=1,H_1:\mu\ne1 H0:μ=1,H1:μ=1,要使得检验结果接受 H 0 H_0 H0,则应有(  )。
( A ) X ‾ ∈ ( − 1 , 1 ) ; (A)\overline{X}\in(-1,1); (A)X(1,1);
( B ) X ‾ ∈ ( − 1 , 3 ) ; (B)\overline{X}\in(-1,3); (B)X(1,3);
( C ) X ‾ ∈ ( − 2 , 2 ) ; (C)\overline{X}\in(-2,2); (C)X(2,2);
( D ) X ‾ ∈ ( 0 , 2 ) . (D)\overline{X}\in(0,2). (D)X(0,2).

  因 σ 2 \sigma^2 σ2未知,置信区间为 ( X ‾ − t α 2 ( n − 1 ) S n , X ‾ + t α 2 ( n − 1 ) S n ) \left(\overline{X}-t_{\frac{\alpha}{2}}(n-1)\cfrac{S}{\sqrt{n}},\overline{X}+t_{\frac{\alpha}{2}}(n-1)\cfrac{S}{\sqrt{n}}\right) (Xt2α(n1)n S,X+t2α(n1)n S),则置信区间长度为 2 t α 2 ( n − 1 ) S n = 2 2t_{\frac{\alpha}{2}}(n-1)\cfrac{S}{\sqrt{n}}=2 2t2α(n1)n S=2,故 t α 2 ( n − 1 ) S n = 1 t_{\frac{\alpha}{2}}(n-1)\cfrac{S}{\sqrt{n}}=1 t2α(n1)n S=1
  要使检验结果接受 H 0 H_0 H0,则应有 ∣ T ∣ = ∣ X ‾ − 1 S n ∣ < t α 2 ( n − 1 ) |T|=\left|\cfrac{\overline{X}-1}{\frac{S}{\sqrt{n}}}\right|<t_{\frac{\alpha}{2}}(n-1) T=n SX1<t2α(n1),即 X ‾ ∈ ( 1 − t α 2 ( n − 1 ) S n , 1 + t α 2 ( n − 1 ) S n ) = ( 0 , 2 ) \overline{X}\in\left(1-t_{\frac{\alpha}{2}}(n-1)\cfrac{S}{\sqrt{n}},1+t_{\frac{\alpha}{2}}(n-1)\cfrac{S}{\sqrt{n}}\right)=(0,2) X(1t2α(n1)n S,1+t2α(n1)n S)=(0,2)时,接受 H 0 H_0 H0。(这道题主要利用了置信区间求解

12. 设总体 X X X的概率密度为 f ( x ; α , β ) = { α , − 1 < x < 0 , β , 0 ⩽ x < 1 , 0 , 其 他 , f(x;\alpha,\beta)=\begin{cases}\alpha,&-1<x<0,\\\beta,&0\leqslant x<1,\\0,&其他,\end{cases} f(x;α,β)=α,β,0,1<x<0,0x<1,,其中 α , β \alpha,\beta α,β是未知参数,总体 X X X的样本值为 − 0.5 , 0.3 , − 0.2 , − 0.6 , − 0.1 , 0.4 , 0.5 , − 0.8 -0.5,0.3,-0.2,-0.6,-0.1,0.4,0.5,-0.8 0.5,0.3,0.2,0.6,0.1,0.4,0.5,0.8。则 α \alpha α的最大似然估计值为______。

  似然函数 L ( α ) = ∏ i = 1 n f ( x i ; α , β ) = α 5 ( 1 − α ) 3 L(\alpha)=\displaystyle\prod^n_{i=1}f(x_i;\alpha,\beta)=\alpha^5(1-\alpha)^3 L(α)=i=1nf(xi;α,β)=α5(1α)3,取对数,求导整理得 d ln ⁡ L ( α ) d α = 5 α − 3 1 − α = 0 \cfrac{\mathrm{d}\ln L(\alpha)}{\mathrm{d}\alpha}=\cfrac{5}{\alpha}-\cfrac{3}{1-\alpha}=0 dαdlnL(α)=α51α3=0,驻点为 α = 5 8 \alpha=\cfrac{5}{8} α=85,则 α \alpha α的最大似然估计值为 α ^ = 5 8 \hat{\alpha}=\cfrac{5}{8} α^=85。(这道题主要利用了似然函数求解

B B B

4.设总体 X ∼ N ( μ , σ 2 ) X\sim N(\mu,\sigma^2) XN(μ,σ2),来自 X X X的一个样本为 X 1 , X 2 , ⋯   , X 2 n X_1,X_2,\cdots,X_{2n} X1,X2,,X2n,记 X ‾ = 1 n ∑ i = 1 n X i , T = ∑ i = 1 n ( X i − X ‾ ) 2 + ∑ i = n + 1 2 n ( X i − μ ) 2 \overline{X}=\cfrac{1}{n}\displaystyle\sum^n_{i=1}X_i,T=\displaystyle\sum^n_{i=1}(X_i-\overline{X})^2+\displaystyle\sum^{2n}_{i=n+1}(X_i-\mu)^2 X=n1i=1nXi,T=i=1n(XiX)2+i=n+12n(Xiμ)2,当 μ \mu μ已知时,基于 T T T构造估计 σ 2 \sigma^2 σ2的置信水平为 1 − α 1-\alpha 1α的置信区间为(  )。
( A ) ( T χ 1 − α 2 2 ( 2 n ) , T χ α 2 2 ( 2 n ) ) ; (A)\left(\cfrac{T}{\chi^2_{1-\frac{\alpha}{2}}(2n)},\cfrac{T}{\chi^2_{\frac{\alpha}{2}}(2n)}\right); (A)(χ12α2(2n)T,χ2α2(2n)T);
( B ) ( T χ α 2 2 ( 2 n ) , T χ 1 − α 2 2 ( 2 n ) ) ; (B)\left(\cfrac{T}{\chi^2_{\frac{\alpha}{2}}(2n)},\cfrac{T}{\chi^2_{1-\frac{\alpha}{2}}(2n)}\right); (B)(χ2α2(2n)T,χ12α2(2n)T);
( C ) ( T χ 1 − α 2 2 ( 2 n − 1 ) , T χ α 2 2 ( 2 n − 1 ) ) ; (C)\left(\cfrac{T}{\chi^2_{1-\frac{\alpha}{2}}(2n-1)},\cfrac{T}{\chi^2_{\frac{\alpha}{2}}(2n-1)}\right); (C)(

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值