张宇1000题概率论与数理统计 第七章 大数定律与中心极限定理

目录

A A A

1.设随机变量 X 1 , X 2 , ⋯   , X n , ⋯ X_1,X_2,\cdots,X_n,\cdots X1,X2,,Xn,相互独立,且同服从参数为 λ \lambda λ的泊松分布,下列随机变量序列不满足切比雪夫大数定律条件的是(  )。
( A ) X 1 , X 2 , ⋯   , X n , ⋯   ; (A)X_1,X_2,\cdots,X_n,\cdots; (A)X1,X2,,Xn,;
( B ) X 1 − 1 , X 2 − 1 , ⋯   , X n − n , ⋯   ; (B)X_1-1,X_2-1,\cdots,X_n-n,\cdots; (B)X11,X21,,Xnn,;
( C ) X 1 , 2 X 2 , ⋯   , n X n , ⋯   ; (C)X_1,2X_2,\cdots,nX_n,\cdots; (C)X1,2X2,,nXn,;
( D ) X 1 , 1 2 X 2 , ⋯   , 1 n X n , ⋯   ; (D)X_1,\cfrac{1}{2}X_2,\cdots,\cfrac{1}{n}X_n,\cdots; (D)X1,21X2,,n1Xn,;

  满足切比雪夫大数定律要有三个条件:要求构成随机变量序列的各随机变量相互独立,显然,各选项均能满足;要求各随机变量的期望和方差都存在,由 E ( X n ) = λ , E ( X n − n ) = λ − n , E ( n X n ) = n λ , E ( 1 n X n ) = 1 n λ , D ( X n ) = λ , D ( X n − n ) = λ , D ( n X n ) = n 2 λ , D ( 1 n X n ) = 1 n 2 λ E(X_n)=\lambda,E(X_n-n)=\lambda-n,E(nX_n)=n\lambda,E\left(\cfrac{1}{n}X_n\right)=\cfrac{1}{n}\lambda,D(X_n)=\lambda,D(X_n-n)=\lambda,D(nX_n)=n^2\lambda,D\left(\cfrac{1}{n}X_n\right)=\cfrac{1}{n^2}\lambda E(Xn)=λ,E(Xnn)=λn,E(nXn)=nλ,E(n1Xn)=n1λ,D(Xn)=λ,D(Xnn)=λ,D(nXn)=n2λ,D(n1Xn)=n21λ,知各选项也都满足;要求方差有公共上界,即 D ( X n ) < C D(X_n)<C D(Xn)<C,其中 C C C是与 n n n无关的常数,而选项 ( C ) (C) (C) D ( n X n ) = n 2 λ D(nX_n)=n^2\lambda D(nXn)=n2λ无上界,从而知,选项 ( C ) (C) (C)不能全部满足切比雪夫大数定律的三个条件,故选 ( C ) (C) (C)。(这道题主要利用了切比雪夫大数定律求解

3.设随机变量 X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn相互独立,则根据切比雪夫大数定律,对于任意 ϵ > 0 \epsilon>0 ϵ>0,有 lim ⁡ n → ∞ P { ∣ 1 n ∑ i = 1 n X i − 1 n ∑ i = 1 n E ( X i ) ∣ < ϵ } = 1 \lim\limits_{n\to\infty}P\left\{\left|\cfrac{1}{n}\displaystyle\sum^n_{i=1}X_i-\cfrac{1}{n}\displaystyle\sum^n_{i=1}E(X_i)\right|<\epsilon\right\}=1 nlimP{n1i=1nXin1i=1nE(Xi)<ϵ}=1,只要 X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn(  )。
( A ) (A) (A)具有相同的分布;
( B ) (B) (B)期望与方差都存在;
( C ) (C) (C)期望与方差都存在且相等;
( D ) (D) (D)方差存在并一致有界。

  由切比雪夫大数定律成立的条件,在 X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn相互独立的前提下,并不要求同分布也不要求有相同的期望和方差,关键是要求方差存在(内含期望存在),且一致有界。因此,选择 ( D ) (D) (D)。(这道题主要利用了切比雪夫大数定律的条件求解

B B B

6.一本书共有 100 100 100万个印刷符号,在排版时每个符号被排错的概率为 0.0001 0.0001 0.0001,校对时每个排版错误被改正的概率为 0.9 0.9 0.9,则校对后错误不超过 15 15 15个的概率为______。( Φ ( x ) = 0.9429 \varPhi(x)=0.9429 Φ(x)=0.9429

  依题设,校对后出现错误的概率应为 p = 0.0001 × 0.1 = 0.00001 p=0.0001\times0.1=0.00001 p=0.0001×0.1=0.00001,记 100 100 100万个印刷符号经校对后出错数为 ξ \xi ξ,则 ξ \xi ξ服从参数为 1000000 , p 1000000,p 1000000,p的二项分布,且 E ( ξ ) = 1000000 × 0.00001 = 10 , D ( ξ ) = 1000000 × 0.00001 × 0.99999 = 9.9999 E(\xi)=1000000\times0.00001=10,D(\xi)=1000000\times0.00001\times0.99999=9.9999 E(ξ)=1000000×0.00001=10,D(ξ)=1000000×0.00001×0.99999=9.9999,根据定理, ξ \xi ξ近似服从正态分布 N ( 10 , 9.9999 ) N(10,9.9999) N(10,9.9999),则 P { ξ ⩽ 15 } ≈ Φ ( 1.58 ) = 0.9429 P\{\xi\leqslant15\}\approx\varPhi(1.58)=0.9429 P{ξ15}Φ(1.58)=0.9429。(这道题主要利用了二项分布求解

C C C

2.设随机变量序列 X 1 , X 2 , ⋯   , X n , ⋯ X_1,X_2,\cdots,X_n,\cdots X1,X2,,Xn,相互独立同分布,且 E ( X i k ) = μ k , D ( X i ) = σ 2 ( i , k = 1 , 2 , ⋯   ) E(X_i^k)=\mu_k,D(X_i)=\sigma^2(i,k=1,2,\cdots) E(Xik)=μk,D(Xi)=σ2(i,k=1,2,),记 A 1 = X ‾ = 1 n ∑ i = 1 n X i A_1=\overline{X}=\cfrac{1}{n}\displaystyle\sum^n_{i=1}X_i A1=X=n1i=1nXi表示随机变量序列的一阶原点矩, A 2 = 1 n ∑ i = 1 n X i 2 A_2=\cfrac{1}{n}\displaystyle\sum^n_{i=1}X_i^2 A2=n1i=1nXi2表示随机变量序列的二阶原点矩, B 2 = 1 n ∑ i = 1 n ( X i − X ‾ ) 2 B_2=\cfrac{1}{n}\displaystyle\sum^n_{i=1}(X_i-\overline{X})^2 B2=n1i=1n(XiX)2表示随机变量序列的二阶中心矩,则当 n → ∞ n\to\infty n时,(  )。
( A ) (A) (A)由大数定律,依概率, A 2 = 1 n ∑ i = 1 n X i 2 A_2=\cfrac{1}{n}\displaystyle\sum^n_{i=1}X_i^2 A2=n1i=1nXi2趋于 μ 2 \mu_2 μ2 B 2 = 1 n ∑ i = 1 n ( X i − X ‾ ) 2 B_2=\cfrac{1}{n}\displaystyle\sum^n_{i=1}(X_i-\overline{X})^2 B2=n1i=1n(XiX)2趋于 σ 2 \sigma^2 σ2
( B ) (B) (B)由大数定律,依概率, A 2 = 1 n ∑ i = 1 n X i 2 A_2=\cfrac{1}{n}\displaystyle\sum^n_{i=1}X_i^2 A2=n1i=1nXi2趋于 μ 2 \mu_2 μ2,但 B 2 = 1 n ∑ i = 1 n ( X i − X ‾ ) 2 B_2=\cfrac{1}{n}\displaystyle\sum^n_{i=1}(X_i-\overline{X})^2 B2=n1i=1n(XiX)2不趋于 σ 2 \sigma^2 σ2
( C ) (C) (C)由大数定律,依概率, B 2 = 1 n ∑ i = 1 n ( X i − X ‾ ) 2 B_2=\cfrac{1}{n}\displaystyle\sum^n_{i=1}(X_i-\overline{X})^2 B2=n1i=1n(XiX)2趋于 σ 2 \sigma^2 σ2,但 A 2 = 1 n ∑ i = 1 n X i 2 A_2=\cfrac{1}{n}\displaystyle\sum^n_{i=1}X_i^2 A2=n1i=1nXi2不趋于 μ 2 \mu_2 μ2
( D ) (D) (D)由大数定律,依概率, A 2 = 1 n ∑ i = 1 n X i 2 A_2=\cfrac{1}{n}\displaystyle\sum^n_{i=1}X_i^2 A2=n1i=1nXi2趋于 μ 2 \mu_2 μ2 B 2 = 1 n ∑ i = 1 n ( X i − X ‾ ) 2 B_2=\cfrac{1}{n}\displaystyle\sum^n_{i=1}(X_i-\overline{X})^2 B2=n1i=1n(XiX)2趋于 σ 2 \sigma^2 σ2

  在随机变量序列 X 1 , X 2 , ⋯   , X n , ⋯ X_1,X_2,\cdots,X_n,\cdots X1,X2,,Xn,相互独立同分布的条件下,若 X i k X_i^k Xik期望存在,即 E ( X i k ) = μ k , k = 1 , 2 , ⋯ E(X_i^k)=\mu_k,k=1,2,\cdots E(Xik)=μk,k=1,2,,则由大数定律,有 A k = 1 n ∑ i = 1 n X i k → P μ k ( k = 1 , 2 , ⋯   ) A_k=\cfrac{1}{n}\displaystyle\sum^n_{i=1}X_i^k\xrightarrow{P}\mu_k(k=1,2,\cdots) Ak=n1i=1nXikP μk(k=1,2,),即有 A 1 = 1 n ∑ i = 1 n X i → P μ 1 , A 2 = 1 n ∑ i = 1 n X i 2 → P μ 2 A_1=\cfrac{1}{n}\displaystyle\sum^n_{i=1}X_i\xrightarrow{P}\mu_1,A_2=\cfrac{1}{n}\displaystyle\sum^n_{i=1}X_i^2\xrightarrow{P}\mu_2 A1=n1i=1nXiP μ1,A2=n1i=1nXi2P μ2,同时有 B 2 = 1 n ∑ i = 1 n ( X i − X ‾ ) 2 = 1 n ∑ i = 1 n X i 2 − X ‾ 2 → P μ 2 − μ 1 2 = σ 2 B_2=\cfrac{1}{n}\displaystyle\sum^n_{i=1}(X_i-\overline{X})^2=\cfrac{1}{n}\displaystyle\sum^n_{i=1}X_i^2-\overline{X}^2\xrightarrow{P}\mu_2-\mu_1^2=\sigma^2 B2=n1i=1n(XiX)2=n1i=1nXi2X2P μ2μ12=σ2,故选择 ( A ) (A) (A)。(这道题主要利用了大数定律求解

4.设 X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn是独立同分布的随机变量序列, E ( X i ) = μ , D ( X i ) = σ 2 , i = 1 , 2 , ⋯   , n E(X_i)=\mu,D(X_i)=\sigma^2,i=1,2,\cdots,n E(Xi)=μ,D(Xi)=σ2,i=1,2,,n,令 Y n = 2 n ( n + 1 ) ∑ i = 1 n i X i Y_n=\cfrac{2}{n(n+1)}\displaystyle\sum^n_{i=1}iX_i Yn=n(n+1)2i=1niXi。证明:随机变量序列 { Y n } \{Y_n\} {Yn}依概率收敛于 μ \mu μ


E ( Y n ) = 2 n ( n + 1 ) ∑ i = 1 n i E ( X i ) = 2 μ n ( n + 1 ) ∑ i = 1 n i = μ , D ( Y n ) = 4 n 2 ( n + 1 ) 2 ∑ i = 1 n i 2 D ( X i ) = 4 σ 2 n 2 ( n + 1 ) 2 ∑ i = 1 n i 2 = 4 σ 2 n 2 ( n + 1 ) 2 ⋅ n ( n + 1 ) ( 2 n + 1 ) 6 = 2 ( 2 n + 1 ) σ 2 3 n ( n + 1 ) . E(Y_n)=\cfrac{2}{n(n+1)}\displaystyle\sum^n_{i=1}iE(X_i)=\cfrac{2\mu}{n(n+1)}\displaystyle\sum^n_{i=1}i=\mu,\\ \begin{aligned} D(Y_n)&=\cfrac{4}{n^2(n+1)^2}\displaystyle\sum^n_{i=1}i^2D(X_i)=\cfrac{4\sigma^2}{n^2(n+1)^2}\displaystyle\sum^n_{i=1}i^2\\ &=\cfrac{4\sigma^2}{n^2(n+1)^2}\cdot\cfrac{n(n+1)(2n+1)}{6}=\cfrac{2(2n+1)\sigma^2}{3n(n+1)}. \end{aligned} E(Yn)=n(n+1)2i=1niE(Xi)=n(n+1)2μi=1ni=μ,D(Yn)=n2(n+1)24i=1ni2D(Xi)=n2(n+1)24σ2i=1ni2=n2(n+1)24σ26n(n+1)(2n+1)=3n(n+1)2(2n+1)σ2.
  由切比雪夫不等式得 P { ∣ Y n − E ( Y n ) ∣ ⩾ ϵ } = P { ∣ Y n − μ ∣ ⩾ ϵ } ⩽ D ( Y n ) ϵ 2 = 2 ( 2 n + 1 ) σ 2 3 n ( n + 1 ) → n → ∞ 0 P\{|Y_n-E(Y_n)|\geqslant\epsilon\}=P\{|Y_n-\mu|\geqslant\epsilon\}\leqslant\cfrac{D(Y_n)}{\epsilon^2}=\cfrac{2(2n+1)\sigma^2}{3n(n+1)}\xrightarrow{n\to\infty}0 P{YnE(Yn)ϵ}=P{Ynμϵ}ϵ2D(Yn)=3n(n+1)2(2n+1)σ2n 0,所以 Y n → P μ Y_n\xrightarrow{P}\mu YnP μ。(这道题主要利用了期望方差变换求解

8.设随机变量 X X X的概率密度为 f ( x ) f(x) f(x),已知方差 D ( X ) = 1 D(X)=1 D(X)=1,而随机变量 Y Y Y的概率密度为 f ( − y ) f(-y) f(y),且 X X X Y Y Y的相关系数为 − 1 4 -\cfrac{1}{4} 41。记 Z = X + Y Z=X+Y Z=X+Y

(1)求 E ( Z ) , D ( Z ) E(Z),D(Z) E(Z),D(Z)


E ( Z ) = E ( X + Y ) = E ( X ) + E ( Y ) = ∫ − ∞ + ∞ x f ( x ) d x + ∫ − ∞ + ∞ y f ( − y ) d y = u = − y ∫ − ∞ + ∞ x f ( x ) d x + ∫ − ∞ + ∞ ( − u ) f ( u ) d ( − u ) = ∫ − ∞ + ∞ x f ( x ) d x − ∫ − ∞ + ∞ u f ( u ) d u = 0 , D ( Z ) = D ( X + Y ) = D ( X ) + D ( Y ) + 2 C o v ( X , Y ) = D ( X ) + D ( Y ) + 2 ρ X Y D ( X ) ⋅ D ( Y ) . \begin{aligned} E(Z)=E(X+Y)&=E(X)+E(Y)=\displaystyle\int^{+\infty}_{-\infty}xf(x)\mathrm{d}x+\displaystyle\int^{+\infty}_{-\infty}yf(-y)\mathrm{d}y\\ &\xlongequal{u=-y}\displaystyle\int^{+\infty}_{-\infty}xf(x)\mathrm{d}x+\displaystyle\int^{+\infty}_{-\infty}(-u)f(u)\mathrm{d}(-u)\\ &=\displaystyle\int^{+\infty}_{-\infty}xf(x)\mathrm{d}x-\displaystyle\int^{+\infty}_{-\infty}uf(u)\mathrm{d}u=0, \end{aligned}\\ \begin{aligned} D(Z)&=D(X+Y)=D(X)+D(Y)+2\mathrm{Cov}(X,Y)\\ &=D(X)+D(Y)+2\rho_{XY}\sqrt{D(X)}\cdot\sqrt{D(Y)}. \end{aligned} E(Z)=E(X+Y)=E(X)+E(Y)=+xf(x)dx++yf(y)dyu=y +xf(x)dx++(u)f(u)d(u)=+xf(x)dx+uf(u)du=0,D(Z)=D(X+Y)=D(X)+D(Y)+2Cov(X,Y)=D(X)+D(Y)+2ρXYD(X) D(Y) .
  又 D ( Y ) = E ( Y 2 ) − [ E ( Y ) ] 2 D(Y)=E(Y^2)-[E(Y)]^2 D(Y)=E(Y2)[E(Y)]2,其中 E ( Y ) = − E ( X ) , E ( Y 2 ) = ∫ − ∞ + ∞ y 2 f ( − y ) d y = ∫ + ∞ − ∞ ( − u ) 2 f ( u ) ( − d u ) = ∫ − ∞ + ∞ u 2 f ( u ) d u = E ( X 2 ) E(Y)=-E(X),E(Y^2)=\displaystyle\int^{+\infty}_{-\infty}y^2f(-y)\mathrm{d}y=\displaystyle\int^{-\infty}_{+\infty}(-u)^2f(u)(-\mathrm{d}u)=\displaystyle\int^{+\infty}_{-\infty}u^2f(u)\mathrm{d}u=E(X^2) E(Y)=E(X),E(Y2)=+y2f(y)dy=+(u)2f(u)(du)=+u2f(u)du=E(X2),所以 D ( Y ) = E ( X 2 ) − [ − E ( X ) ] 2 = E ( X 2 ) − [ E ( X ) ] 2 = D ( X ) = 1 D(Y)=E(X^2)-[-E(X)]^2=E(X^2)-[E(X)]^2=D(X)=1 D(Y)=E(X2)[E(X)]2=E(X2)[E(X)]2=D(X)=1,故 D ( Z ) = 1 + 1 + 2 × ( − 1 4 ) × 1 × 1 = 3 2 D(Z)=1+1+2\times\left(-\cfrac{1}{4}\right)\times1\times1=\cfrac{3}{2} D(Z)=1+1+2×(41)×1×1=23

(2)用切比雪夫不等式估计 P { ∣ Z ∣ ⩾ 2 } P\{|Z|\geqslant2\} P{Z2}

  由切比雪夫不等式得 P { ∣ Z ∣ ⩾ 2 } = P { ∣ Z − E ( Z ) ∣ ⩾ 2 } ⩽ D ( Z ) 2 2 = 3 8 P\{|Z|\geqslant2\}=P\{|Z-E(Z)|\geqslant2\}\leqslant\cfrac{D(Z)}{2^2}=\cfrac{3}{8} P{Z2}=P{ZE(Z)2}22D(Z)=83。(这道题主要利用了积分变换求解

写在最后

  如果觉得文章不错就点个赞吧。另外,如果有不同的观点,欢迎留言或私信。
  欢迎非商业转载,转载请注明出处。

  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值