目录
- A A A组
- B B B组
- 13.设 X 1 , X 2 , X 3 , X 4 X_1,X_2,X_3,X_4 X1,X2,X3,X4为来自总体 N ( 1 , σ 2 ) ( σ > 0 ) N(1,\sigma^2)(\sigma>0) N(1,σ2)(σ>0)的简单随机样本,求统计量 X 1 − X 2 ∣ X 3 + X 4 − 2 ∣ \cfrac{X_1-X_2}{|X_3+X_4-2|} ∣X3+X4−2∣X1−X2的分布类型和自由度。
- 14.设 X 1 , X 2 , ⋯ , X n , X n + 1 ( n ⩾ 2 ) X_1,X_2,\cdots,X_n,X_{n+1}(n\geqslant2) X1,X2,⋯,Xn,Xn+1(n⩾2)是来自总体 N ( μ , σ 2 ) N(\mu,\sigma^2) N(μ,σ2)的简单随机样本, X ∗ ‾ = 1 n ∑ i = 1 n X i , S ∗ 2 = 1 n ∑ i = 1 n ( X i − X ∗ ‾ ) 2 \overline{X^*}=\cfrac{1}{n}\displaystyle\sum^n_{i=1}X_i,S^{*^2}=\cfrac{1}{n}\displaystyle\sum^n_{i=1}(X_i-\overline{X^*})^2 X∗=n1i=1∑nXi,S∗2=n1i=1∑n(Xi−X∗)2,求统计量 T = X n + 1 − X ∗ ‾ S ∗ n − 1 n + 1 T=\cfrac{X_{n+1}-\overline{X^*}}{S^*}\sqrt{\cfrac{n-1}{n+1}} T=S∗Xn+1−X∗n+1n−1的分布。
- C C C组
- 2.设总体
X
∼
N
(
a
,
σ
2
)
,
Y
∼
N
(
b
,
σ
2
)
X\sim N(a,\sigma^2),Y\sim N(b,\sigma^2)
X∼N(a,σ2),Y∼N(b,σ2),且相互独立。分别从
X
X
X和
Y
Y
Y中各抽取容量为
9
9
9和
10
10
10的简单随机样本,记它们的方差分别为
S
X
2
S_X^2
SX2和
S
Y
2
S_Y^2
SY2,并记
S
12
2
=
1
2
(
S
X
2
+
S
Y
2
)
S_{12}^2=\cfrac{1}{2}(S_X^2+S_Y^2)
S122=21(SX2+SY2)和
S
X
Y
2
=
1
18
(
8
S
X
2
+
10
S
Y
2
)
S_{XY}^2=\cfrac{1}{18}(8S_X^2+10S_Y^2)
SXY2=181(8SX2+10SY2),则这四个统计量中,方差最小者是( )。
( A ) S X 2 ; (A)S_X^2; (A)SX2;
( B ) S Y 2 ; (B)S_Y^2; (B)SY2;
( C ) S 12 2 ; (C)S_{12}^2; (C)S122;
( D ) S X Y 2 . (D)S_{XY}^2. (D)SXY2. - 4.设 X 1 , X 2 , X 3 , X 4 , X 5 X_1,X_2,X_3,X_4,X_5 X1,X2,X3,X4,X5是来自总体 X ∼ N ( 0 , 2 2 ) X\sim N(0,2^2) X∼N(0,22)的简单随机样本, X ‾ = 1 3 ∑ i = 1 3 X i \overline{X}=\cfrac{1}{3}\displaystyle\sum^3_{i=1}X_i X=31i=1∑3Xi。
- (1)令随机变量 Y = ∑ i = 1 3 ( X i − X ‾ ) 2 + ( X 4 − X 5 ) 2 Y=\displaystyle\sum^3_{i=1}(X_i-\overline{X})^2+(X_4-X_5)^2 Y=i=1∑3(Xi−X)2+(X4−X5)2,求 E ( Y ) E(Y) E(Y)与 D ( Y ) D(Y) D(Y);
- (2)求随机变量 Z = X 4 − X 5 ∑ i = 1 3 ( X i − X ‾ ) 2 Z=\cfrac{X_4-X_5}{\sqrt{\displaystyle\sum^3_{i=1}(X_i-\overline{X})^2}} Z=i=1∑3(Xi−X)2X4−X5的分布;
- (3)对于(2)中的 Z Z Z,给定 α ( 0 < α < 0.5 ) \alpha(0<\alpha<0.5) α(0<α<0.5),常数 c c c满足 P { Z > c } = α P\{Z>c\}=\alpha P{Z>c}=α,随机变量 U ∼ F ( 2 , 1 ) U\sim F(2,1) U∼F(2,1),求 P { U > 1 c 2 } P\left\{U>\cfrac{1}{c^2}\right\} P{U>c21}。
- 2.设总体
X
∼
N
(
a
,
σ
2
)
,
Y
∼
N
(
b
,
σ
2
)
X\sim N(a,\sigma^2),Y\sim N(b,\sigma^2)
X∼N(a,σ2),Y∼N(b,σ2),且相互独立。分别从
X
X
X和
Y
Y
Y中各抽取容量为
9
9
9和
10
10
10的简单随机样本,记它们的方差分别为
S
X
2
S_X^2
SX2和
S
Y
2
S_Y^2
SY2,并记
S
12
2
=
1
2
(
S
X
2
+
S
Y
2
)
S_{12}^2=\cfrac{1}{2}(S_X^2+S_Y^2)
S122=21(SX2+SY2)和
S
X
Y
2
=
1
18
(
8
S
X
2
+
10
S
Y
2
)
S_{XY}^2=\cfrac{1}{18}(8S_X^2+10S_Y^2)
SXY2=181(8SX2+10SY2),则这四个统计量中,方差最小者是( )。
- 写在最后
A A A组
5.设
X
1
,
X
2
,
⋯
,
X
n
(
n
⩾
2
)
X_1,X_2,\cdots,X_n(n\geqslant2)
X1,X2,⋯,Xn(n⩾2)为来自总体
X
∼
N
(
0
,
1
)
X\sim N(0,1)
X∼N(0,1)的简单随机样本,
X
‾
\overline{X}
X为样本均值,令
Y
=
∑
i
=
1
n
(
X
i
−
X
‾
)
2
σ
2
Y=\cfrac{\displaystyle\sum^n_{i=1}(X_i-\overline{X})^2}{\sigma^2}
Y=σ2i=1∑n(Xi−X)2,则
Y
∼
Y\sim
Y∼( )。
(
A
)
χ
2
(
n
−
1
)
;
(A)\chi^2(n-1);
(A)χ2(n−1);
(
B
)
χ
2
(
n
)
;
(B)\chi^2(n);
(B)χ2(n);
(
C
)
N
(
μ
,
σ
2
)
;
(C)N(\mu,\sigma^2);
(C)N(μ,σ2);
(
D
)
N
(
μ
,
σ
2
n
)
;
(D)N\left(\mu,\cfrac{\sigma^2}{n}\right);
(D)N(μ,nσ2);
解 一般地,
χ
2
\chi^2
χ2分布定义为:若随机变量
X
1
,
X
2
,
⋯
,
X
n
X_1,X_2,\cdots,X_n
X1,X2,⋯,Xn独立同分布,且都服从标准正态分布
N
(
0
,
1
)
N(0,1)
N(0,1),则称统计量
χ
2
=
X
1
2
+
X
2
2
+
⋯
+
X
n
2
\chi^2=X_1^2+X_2^2+\cdots+X_n^2
χ2=X12+X22+⋯+Xn2服从自由度为
n
n
n的
χ
2
\chi^2
χ2分布,记为
χ
2
∼
χ
2
(
n
)
\chi^2\sim\chi^2(n)
χ2∼χ2(n)。
在讨论抽样分布时,在总体均值
μ
\mu
μ已知的情况下,统计量
∑
i
=
1
n
(
X
i
−
μ
)
2
σ
2
\cfrac{\displaystyle\sum^n_{i=1}(X_i-\mu)^2}{\sigma^2}
σ2i=1∑n(Xi−μ)2服从自由度为
n
n
n的
χ
2
\chi^2
χ2分布,在
μ
\mu
μ未知的情况下,统计量
(
n
−
1
)
S
2
σ
2
\cfrac{(n-1)S^2}{\sigma^2}
σ2(n−1)S2服从自由度为
n
−
1
n-1
n−1的
χ
2
\chi^2
χ2分布,由此可以判定
Y
Y
Y应服从自由度为
n
−
1
n-1
n−1的
χ
2
\chi^2
χ2分布,故选
(
A
)
(A)
(A)。(这道题主要利用了统计量分布求解)
B B B组
13.设 X 1 , X 2 , X 3 , X 4 X_1,X_2,X_3,X_4 X1,X2,X3,X4为来自总体 N ( 1 , σ 2 ) ( σ > 0 ) N(1,\sigma^2)(\sigma>0) N(1,σ2)(σ>0)的简单随机样本,求统计量 X 1 − X 2 ∣ X 3 + X 4 − 2 ∣ \cfrac{X_1-X_2}{|X_3+X_4-2|} ∣X3+X4−2∣X1−X2的分布类型和自由度。
解 由 X 1 − X 2 ∣ X 3 + X 4 − 2 ∣ = X 1 − X 2 2 σ ( X 3 + X 4 − 2 2 σ ) 2 \cfrac{X_1-X_2}{|X_3+X_4-2|}=\cfrac{\cfrac{X_1-X_2}{\sqrt{2}\sigma}}{\sqrt{\left(\cfrac{X_3+X_4-2}{\sqrt{2}\sigma}\right)^2}} ∣X3+X4−2∣X1−X2=(2σX3+X4−2)22σX1−X2,其中 X 1 − X 2 2 σ ∼ N ( 0 , 1 ) \cfrac{X_1-X_2}{\sqrt{2}\sigma}\sim N(0,1) 2σX1−X2∼N(0,1),且 X 3 + X 4 − 2 2 σ ∼ N ( 0 , 1 ) , ( X 3 + X 4 − 2 2 σ ) 2 ∼ χ 2 ( 1 ) \cfrac{X_3+X_4-2}{\sqrt{2}\sigma}\sim N(0,1),\left(\cfrac{X_3+X_4-2}{\sqrt{2}\sigma}\right)^2\sim\chi^2(1) 2σX3+X4−2∼N(0,1),(2σX3+X4−2)2∼χ2(1)。又 X 1 − X 2 2 σ \cfrac{X_1-X_2}{\sqrt{2}\sigma} 2σX1−X2与 ( X 3 + X 4 − 2 2 σ ) 2 \left(\cfrac{X_3+X_4-2}{\sqrt{2}\sigma}\right)^2 (2σX3+X4−2)2相互独立。根据 t t t分布的典型模式,知 X 1 − X 2 2 σ ( X 3 + X 4 − 2 2 σ ) 2 ∼ t ( 1 ) \cfrac{\cfrac{X_1-X_2}{\sqrt{2}\sigma}}{\sqrt{\left(\cfrac{X_3+X_4-2}{\sqrt{2}\sigma}\right)^2}}\sim t(1) (2σX3+X4−2)22σX1−X2∼t(1),即该统计量服从自由度为 1 1 1的 t t t分布。(这道题主要利用了构造分布求解)
14.设 X 1 , X 2 , ⋯ , X n , X n + 1 ( n ⩾ 2 ) X_1,X_2,\cdots,X_n,X_{n+1}(n\geqslant2) X1,X2,⋯,Xn,Xn+1(n⩾2)是来自总体 N ( μ , σ 2 ) N(\mu,\sigma^2) N(μ,σ2)的简单随机样本, X ∗ ‾ = 1 n ∑ i = 1 n X i , S ∗ 2 = 1 n ∑ i = 1 n ( X i − X ∗ ‾ ) 2 \overline{X^*}=\cfrac{1}{n}\displaystyle\sum^n_{i=1}X_i,S^{*^2}=\cfrac{1}{n}\displaystyle\sum^n_{i=1}(X_i-\overline{X^*})^2 X∗=n1i=1∑nXi,S∗2=n1i=1∑n(Xi−X∗)2,求统计量 T = X n + 1 − X ∗ ‾ S ∗ n − 1 n + 1 T=\cfrac{X_{n+1}-\overline{X^*}}{S^*}\sqrt{\cfrac{n-1}{n+1}} T=S∗Xn+1−X∗n+1n−1的分布。
解 由 X n + 1 − X ∗ ‾ ∼ N ( 0 , n + 1 n σ 2 ) X_{n+1}-\overline{X^*}\sim N\left(0,\cfrac{n+1}{n}\sigma^2\right) Xn+1−X∗∼N(0,nn+1σ2),知 X n + 1 − X ∗ ‾ n + 1 n σ ∼ N ( 0 , 1 ) \cfrac{X_{n+1}-\overline{X^*}}{\sqrt{\cfrac{n+1}{n}\sigma}}\sim N(0,1) nn+1σXn+1−X∗∼N(0,1),且 n S ∗ 2 σ 2 ∼ χ 2 ( n − 1 ) \cfrac{nS^{*^2}}{\sigma^2}\sim\chi^2(n-1) σ2nS∗2∼χ2(n−1)。由于 X n + 1 X_{n+1} Xn+1与 X ∗ ‾ \overline{X^*} X∗相互独立, X n + 1 X_{n+1} Xn+1与 S ∗ 2 S^{*^2} S∗2相互独立,又 X ∗ ‾ \overline{X^*} X∗与 S ∗ 2 S^{*^2} S∗2相互独立,因此, X n + 1 − X ∗ ‾ X_{n+1}-\overline{X^*} Xn+1−X∗与 S ∗ 2 S^{*^2} S∗2相互独立。于是 T = X n + 1 − X ∗ ‾ S ∗ n − 1 n + 1 = X n + 1 − X ∗ ‾ n + 1 / n σ n S ∗ 2 σ 2 / ( n − 1 ) ∼ t ( n − 1 ) T=\cfrac{X_{n+1}-\overline{X^*}}{S^*}\sqrt{\cfrac{n-1}{n+1}}=\cfrac{\cfrac{X_{n+1}-\overline{X^*}}{\sqrt{n+1/n}\sigma}}{\sqrt{\cfrac{nS^{*^2}}{\sigma^2}\biggm/(n-1)}}\sim t(n-1) T=S∗Xn+1−X∗n+1n−1=σ2nS∗2/(n−1)n+1/nσXn+1−X∗∼t(n−1)。(这道题主要利用了构造分布求解)
C C C组
2.设总体
X
∼
N
(
a
,
σ
2
)
,
Y
∼
N
(
b
,
σ
2
)
X\sim N(a,\sigma^2),Y\sim N(b,\sigma^2)
X∼N(a,σ2),Y∼N(b,σ2),且相互独立。分别从
X
X
X和
Y
Y
Y中各抽取容量为
9
9
9和
10
10
10的简单随机样本,记它们的方差分别为
S
X
2
S_X^2
SX2和
S
Y
2
S_Y^2
SY2,并记
S
12
2
=
1
2
(
S
X
2
+
S
Y
2
)
S_{12}^2=\cfrac{1}{2}(S_X^2+S_Y^2)
S122=21(SX2+SY2)和
S
X
Y
2
=
1
18
(
8
S
X
2
+
10
S
Y
2
)
S_{XY}^2=\cfrac{1}{18}(8S_X^2+10S_Y^2)
SXY2=181(8SX2+10SY2),则这四个统计量中,方差最小者是( )。
(
A
)
S
X
2
;
(A)S_X^2;
(A)SX2;
(
B
)
S
Y
2
;
(B)S_Y^2;
(B)SY2;
(
C
)
S
12
2
;
(C)S_{12}^2;
(C)S122;
(
D
)
S
X
Y
2
.
(D)S_{XY}^2.
(D)SXY2.
解 由 8 S X 2 σ 2 ∼ χ 2 ( 8 ) , 9 S X 2 σ 2 ∼ χ 2 ( 9 ) \cfrac{8S_X^2}{\sigma^2}\sim\chi^2(8),\cfrac{9S_X^2}{\sigma^2}\sim\chi^2(9) σ28SX2∼χ2(8),σ29SX2∼χ2(9)知 D ( S X 2 ) = 2 σ 4 8 = 1 4 σ 4 , D ( S Y 2 ) = 2 σ 4 9 , D ( S 12 2 ) = 1 4 ( 1 4 σ 4 + 2 9 σ 4 ) = 17 144 σ 4 , D ( S X Y 2 ) = 16 81 × 1 4 σ 4 + 25 81 × 2 9 σ 4 = 86 729 σ 4 D(S_X^2)=\cfrac{2\sigma^4}{8}=\cfrac{1}{4}\sigma^4,D(S_Y^2)=\cfrac{2\sigma^4}{9},D(S_{12}^2)=\cfrac{1}{4}\left(\cfrac{1}{4}\sigma^4+\cfrac{2}{9}\sigma^4\right)=\cfrac{17}{144}\sigma^4,D(S_{XY}^2)=\cfrac{16}{81}\times\cfrac{1}{4}\sigma^4+\cfrac{25}{81}\times\cfrac{2}{9}\sigma^4=\cfrac{86}{729}\sigma^4 D(SX2)=82σ4=41σ4,D(SY2)=92σ4,D(S122)=41(41σ4+92σ4)=14417σ4,D(SXY2)=8116×41σ4+8125×92σ4=72986σ4,所以方差最小者为 S X Y 2 S_{XY}^2 SXY2,故选 ( D ) (D) (D)。(这道题主要利用了方差变换求解)
4.设 X 1 , X 2 , X 3 , X 4 , X 5 X_1,X_2,X_3,X_4,X_5 X1,X2,X3,X4,X5是来自总体 X ∼ N ( 0 , 2 2 ) X\sim N(0,2^2) X∼N(0,22)的简单随机样本, X ‾ = 1 3 ∑ i = 1 3 X i \overline{X}=\cfrac{1}{3}\displaystyle\sum^3_{i=1}X_i X=31i=1∑3Xi。
(1)令随机变量 Y = ∑ i = 1 3 ( X i − X ‾ ) 2 + ( X 4 − X 5 ) 2 Y=\displaystyle\sum^3_{i=1}(X_i-\overline{X})^2+(X_4-X_5)^2 Y=i=1∑3(Xi−X)2+(X4−X5)2,求 E ( Y ) E(Y) E(Y)与 D ( Y ) D(Y) D(Y);
解 设 X 1 , X 2 , X 3 , X 4 , X 5 X_1,X_2,X_3,X_4,X_5 X1,X2,X3,X4,X5是来自总体 X ∼ N ( 0 , 2 2 ) X\sim N(0,2^2) X∼N(0,22)的简单随机样本,由 1 2 2 ∑ i = 1 3 ( X i − X ‾ ) 2 ∼ χ 2 ( 2 ) \cfrac{1}{2^2}\displaystyle\sum^3_{i=1}(X_i-\overline{X})^2\sim\chi^2(2) 221i=1∑3(Xi−X)2∼χ2(2),得 E [ 1 2 2 ∑ i = 1 3 ( X i − X ‾ ) 2 ] = 2 ⇒ E [ ∑ i = 1 3 ( X i − X ‾ ) 2 ] = 8 , D [ 1 2 2 ∑ i = 1 3 ( X i − X ‾ ) 2 ] = 4 ⇒ D [ ∑ i = 1 3 ( X i − X ‾ ) 2 ] = 64 E\left[\cfrac{1}{2^2}\displaystyle\sum^3_{i=1}(X_i-\overline{X})^2\right]=2\Rightarrow E\left[\displaystyle\sum^3_{i=1}(X_i-\overline{X})^2\right]=8,D\left[\cfrac{1}{2^2}\displaystyle\sum^3_{i=1}(X_i-\overline{X})^2\right]=4\Rightarrow D\left[\displaystyle\sum^3_{i=1}(X_i-\overline{X})^2\right]=64 E[221i=1∑3(Xi−X)2]=2⇒E[i=1∑3(Xi−X)2]=8,D[221i=1∑3(Xi−X)2]=4⇒D[i=1∑3(Xi−X)2]=64。又 X 4 − X 5 ∼ N ( 0 , 8 ) ⇒ X 4 − X 5 8 ∼ N ( 0 , 1 ) ⇒ ( X 4 − X 5 ) 2 8 ∼ χ 2 ( 1 ) X_4-X_5\sim N(0,8)\Rightarrow\cfrac{X_4-X_5}{\sqrt{8}}\sim N(0,1)\Rightarrow\cfrac{(X_4-X_5)^2}{8}\sim\chi^2(1) X4−X5∼N(0,8)⇒8X4−X5∼N(0,1)⇒8(X4−X5)2∼χ2(1),得 E [ ( X 4 − X 5 ) 2 8 ] = 1 ⇒ E [ ( X 4 − X 5 ) 2 ] = 8 , D [ ( X 4 − X 5 ) 2 8 ] = 2 ⇒ D [ ( X 4 − X 5 ) 2 ] = 128 E\left[\cfrac{(X_4-X_5)^2}{8}\right]=1\Rightarrow E[(X_4-X_5)^2]=8,D\left[\cfrac{(X_4-X_5)^2}{8}\right]=2\Rightarrow D[(X_4-X_5)^2]=128 E[8(X4−X5)2]=1⇒E[(X4−X5)2]=8,D[8(X4−X5)2]=2⇒D[(X4−X5)2]=128。所以 E ( Y ) = E [ ∑ i = 1 3 ( X i − X ‾ ) 2 ] + E [ ( X 4 − X 5 ) 2 ] = 8 + 8 = 16 E(Y)=E\left[\displaystyle\sum^3_{i=1}(X_i-\overline{X})^2\right]+E[(X_4-X_5)^2]=8+8=16 E(Y)=E[i=1∑3(Xi−X)2]+E[(X4−X5)2]=8+8=16。又 ∑ i = 1 3 ( X i − X ‾ ) 2 \displaystyle\sum^3_{i=1}(X_i-\overline{X})^2 i=1∑3(Xi−X)2与 ( X 4 − X 5 ) 2 (X_4-X_5)^2 (X4−X5)2独立,所以 D ( Y ) = D [ ∑ i = 1 3 ( X i − X ‾ ) 2 + ( X 4 − X 5 ) 2 ] = D [ ∑ i = 1 3 ( X i − X ‾ ) 2 ] + D [ ( X 4 − X 5 ) 2 ] = 64 + 128 = 192 D(Y)=D\left[\displaystyle\sum^3_{i=1}(X_i-\overline{X})^2+(X_4-X_5)^2\right]=D\left[\displaystyle\sum^3_{i=1}(X_i-\overline{X})^2\right]+D[(X_4-X_5)^2]=64+128=192 D(Y)=D[i=1∑3(Xi−X)2+(X4−X5)2]=D[i=1∑3(Xi−X)2]+D[(X4−X5)2]=64+128=192。
(2)求随机变量 Z = X 4 − X 5 ∑ i = 1 3 ( X i − X ‾ ) 2 Z=\cfrac{X_4-X_5}{\sqrt{\displaystyle\sum^3_{i=1}(X_i-\overline{X})^2}} Z=i=1∑3(Xi−X)2X4−X5的分布;
解 由 X 4 − X 5 8 ∼ N ( 0 , 1 ) , 1 2 2 ∑ i = 1 3 ( X i − X ‾ ) 2 ∼ χ 2 ( 2 ) \cfrac{X_4-X_5}{\sqrt{8}}\sim N(0,1),\cfrac{1}{2^2}\displaystyle\sum^3_{i=1}(X_i-\overline{X})^2\sim\chi^2(2) 8X4−X5∼N(0,1),221i=1∑3(Xi−X)2∼χ2(2),又 ∑ i = 1 3 ( X i − X ‾ ) 2 \displaystyle\sum^3_{i=1}(X_i-\overline{X})^2 i=1∑3(Xi−X)2与 ( X 4 − X 5 ) 2 (X_4-X_5)^2 (X4−X5)2独立,所以 Z = X 4 − X 5 ∑ i = 1 3 ( X i − X ‾ ) 2 = X 4 − X 5 8 1 2 2 ∑ i = 1 3 ( X i − X ‾ ) 2 2 ∼ t ( 2 ) Z=\cfrac{X_4-X_5}{\sqrt{\displaystyle\sum^3_{i=1}(X_i-\overline{X})^2}}=\cfrac{\cfrac{X_4-X_5}{\sqrt{8}}}{\sqrt{\cfrac{\cfrac{1}{2^2}\displaystyle\sum^3_{i=1}(X_i-\overline{X})^2}{2}}}\sim t(2) Z=i=1∑3(Xi−X)2X4−X5=2221i=1∑3(Xi−X)28X4−X5∼t(2)。
(3)对于(2)中的 Z Z Z,给定 α ( 0 < α < 0.5 ) \alpha(0<\alpha<0.5) α(0<α<0.5),常数 c c c满足 P { Z > c } = α P\{Z>c\}=\alpha P{Z>c}=α,随机变量 U ∼ F ( 2 , 1 ) U\sim F(2,1) U∼F(2,1),求 P { U > 1 c 2 } P\left\{U>\cfrac{1}{c^2}\right\} P{U>c21}。
解 Z ∼ t ( 2 ) ⇒ Z 2 ∼ F ( 1 , 2 ) Z\sim t(2)\Rightarrow Z^2\sim F(1,2) Z∼t(2)⇒Z2∼F(1,2),又 U ∼ F ( 2 , 1 ) U\sim F(2,1) U∼F(2,1),故 1 Z 2 \cfrac{1}{Z^2} Z21与 U U U同分布,则 P { U > 1 c 2 } = P { 1 Z 2 > 1 c 2 } = P { Z 2 < c 2 } = P { − c < Z < c } = 1 − 2 α P\left\{U>\cfrac{1}{c^2}\right\}=P\left\{\cfrac{1}{Z^2}>\cfrac{1}{c^2}\right\}=P\{Z^2<c^2\}=P\{-c<Z<c\}=1-2\alpha P{U>c21}=P{Z21>c21}=P{Z2<c2}=P{−c<Z<c}=1−2α。(这道题主要利用了方差变换求解)
写在最后
如果觉得文章不错就点个赞吧。另外,如果有不同的观点,欢迎留言或私信。
欢迎非商业转载,转载请注明出处。