张宇1000题高等数学 第九章 一元函数积分学的计算

目录

B B B

5. ∫ − π 2 π 2 3 e x sin ⁡ 2 x 1 + e x d x = \displaystyle\int^{\frac{\pi}{2}}_{-\frac{\pi}{2}}\cfrac{3e^x\sin^2x}{1+e^x}\mathrm{d}x= 2π2π1+ex3exsin2xdx=______。


∫ − π 2 π 2 3 e x sin ⁡ 2 x 1 + e x d x = x = − t ∫ − π 2 π 2 3 e − t sin ⁡ 2 t 1 + e − t d t = 3 ∫ − π 2 π 2 sin ⁡ 2 t 1 + e t d t = 3 2 ∫ − π 2 π 2 sin ⁡ 2 t d t = 3 ⋅ 1 2 ⋅ π 2 = 3 π 4 . \begin{aligned} \displaystyle\int^{\frac{\pi}{2}}_{-\frac{\pi}{2}}\cfrac{3e^x\sin^2x}{1+e^x}\mathrm{d}x&\xlongequal{x=-t}\displaystyle\int^{\frac{\pi}{2}}_{-\frac{\pi}{2}}\cfrac{3e^{-t}\sin^2t}{1+e^{-t}}\mathrm{d}t=3\displaystyle\int^{\frac{\pi}{2}}_{-\frac{\pi}{2}}\cfrac{\sin^2t}{1+e^{t}}\mathrm{d}t\\ &=\cfrac{3}{2}\displaystyle\int^{\frac{\pi}{2}}_{-\frac{\pi}{2}}\sin^2t\mathrm{d}t=3\cdot\cfrac{1}{2}\cdot\cfrac{\pi}{2}=\cfrac{3\pi}{4}. \end{aligned} 2π2π1+ex3exsin2xdxx=t 2π2π1+et3etsin2tdt=32π2π1+etsin2tdt=232π2πsin2tdt=3212π=43π.
这道题主要利用了换元积分法求解

9.计算下列积分。

(2) ∫ 0 + ∞ x e − 3 x ( 1 + e − 3 x ) 2 d x ; \displaystyle\int^{+\infty}_0\cfrac{xe^{-3x}}{(1+e^{-3x})^2}\mathrm{d}x; 0+(1+e3x)2xe3xdx;


∫ 0 + ∞ x e − 3 x ( 1 + e − 3 x ) 2 d x = ∫ 0 + ∞ x e 3 x ( 1 + e 3 x ) 2 d x = − 1 3 ∫ 0 + ∞ x d ( 1 1 + e 3 x ) = − x e 3 x 1 + e 3 x ∣ 0 + ∞ + 1 3 ∫ 0 + ∞ 1 1 + e 3 x d x = 1 3 ∫ 0 + ∞ e 3 x e 3 x ( 1 + e 3 x ) d x = 1 9 ln ⁡ e 3 x e 3 x + 1 ∣ 0 + ∞ = 1 9 ln ⁡ 2. \begin{aligned} \displaystyle\int^{+\infty}_0\cfrac{xe^{-3x}}{(1+e^{-3x})^2}\mathrm{d}x&=\displaystyle\int^{+\infty}_0\cfrac{xe^{3x}}{(1+e^{3x})^2}\mathrm{d}x=-\cfrac{1}{3}\displaystyle\int^{+\infty}_0x\mathrm{d}\left(\cfrac{1}{1+e^{3x}}\right)\\ &=-\cfrac{xe^{3x}}{1+e^{3x}}\biggm\vert^{+\infty}_0+\cfrac{1}{3}\displaystyle\int^{+\infty}_0\cfrac{1}{1+e^{3x}}\mathrm{d}x\\ &=\cfrac{1}{3}\displaystyle\int^{+\infty}_0\cfrac{e^{3x}}{e^{3x}(1+e^{3x})}\mathrm{d}x\\ &=\cfrac{1}{9}\ln\cfrac{e^{3x}}{e^{3x}+1}\biggm\vert^{+\infty}_0=\cfrac{1}{9}\ln2. \end{aligned} 0+(1+e3x)2xe3xdx=0+(1+e3x)2xe3xdx=310+xd(1+e3x1)=1+e3xxe3x0++310+1+e3x1dx=310+e3x(1+e3x)e3xdx=91lne3x+1e3x0+=91ln2.
这道题主要利用了分部积分法求解

(6) ∫ d x 2 + cos ⁡ x ; \displaystyle\int\cfrac{\mathrm{d}x}{2+\cos x}; 2+cosxdx;

  令 t = tan ⁡ x 2 t=\tan\cfrac{x}{2} t=tan2x,则
∫ d x 2 + cos ⁡ x = ∫ 1 2 + 1 − t 2 1 + t 2 ⋅ 2 1 + t 2 d t = ∫ 2 3 + t 2 d t = 2 3 ∫ 1 1 + ( t 3 ) 2 d t = 2 3 arctan ⁡ t 3 + C . \begin{aligned} \displaystyle\int\cfrac{\mathrm{d}x}{2+\cos x}&=\displaystyle\int\cfrac{1}{2+\cfrac{1-t^2}{1+t^2}}\cdot\cfrac{2}{1+t^2}\mathrm{d}t=\displaystyle\int\cfrac{2}{3+t^2}\mathrm{d}t\\ &=\cfrac{2}{3}\displaystyle\int\cfrac{1}{1+\left(\cfrac{t}{\sqrt{3}}\right)^2}\mathrm{d}t=\cfrac{2}{\sqrt{3}}\arctan\cfrac{t}{\sqrt{3}}+C. \end{aligned} 2+cosxdx=2+1+t21t211+t22dt=3+t22dt=321+(3 t)21dt=3 2arctan3 t+C.
  其中 t = tan ⁡ x 2 t=\tan\cfrac{x}{2} t=tan2x。(这道题主要利用了万能公式求解

(8) ∫ d x x + x + 2 ; \displaystyle\int\cfrac{\mathrm{d}x}{x+\sqrt{x+2}}; x+x+2 dx;

  令 t = x + 2 t=\sqrt{x+2} t=x+2 ,则
∫ d x x + x + 2 = ∫ 2 t t 2 + t − 2 d t = 2 3 ( ∫ 2 t + 2 d t + ∫ 1 t − 1 d t ) = 2 3 ln ⁡ ∣ ( t + 2 ) 2 ( t − 1 ) ∣ + C = 2 3 ln ⁡ ∣ ( x + 2 + 2 ) 2 ( x + 2 − 1 ) ∣ + C . \begin{aligned} \displaystyle\int\cfrac{\mathrm{d}x}{x+\sqrt{x+2}}&=\displaystyle\int\cfrac{2t}{t^2+t-2}\mathrm{d}t=\cfrac{2}{3}\left(\displaystyle\int\cfrac{2}{t+2}\mathrm{d}t+\displaystyle\int\cfrac{1}{t-1}\mathrm{d}t\right)\\ &=\cfrac{2}{3}\ln|(t+2)^2(t-1)|+C\\ &=\cfrac{2}{3}\ln|(\sqrt{x+2}+2)^2(\sqrt{x+2}-1)|+C. \end{aligned} x+x+2 dx=t2+t22tdt=32(t+22dt+t11dt)=32ln(t+2)2(t1)+C=32ln(x+2 +2)2(x+2 1)+C.
这道题主要利用了换元积分法求解

(11) ∫ 0 2 [ ( x − 1 ) 3 + 2 x ] 1 − cos ⁡ 2 n x d x ; \displaystyle\int^2_0[(x-1)^3+2x]\sqrt{1-\cos2nx}\mathrm{d}x; 02[(x1)3+2x]1cos2nx dx;


∫ 0 2 [ ( x − 1 ) 3 + 2 x ] 1 − cos ⁡ 2 n x d x = x − 1 = t ∫ − 1 1 ( t 3 + 2 t + 2 ) 1 − cos ⁡ 2 π t d t = 4 ∫ 0 1 1 − cos ⁡ 2 π t d t = 4 2 ∫ 0 1 sin ⁡ π t d t = 8 2 π . \begin{aligned} \displaystyle\int^2_0[(x-1)^3+2x]\sqrt{1-\cos2nx}\mathrm{d}x&\xlongequal{x-1=t}\displaystyle\int^1_{-1}(t^3+2t+2)\sqrt{1-\cos2\pi t}\mathrm{d}t\\ &=4\displaystyle\int^1_0\sqrt{1-\cos2\pi t}\mathrm{d}t=4\sqrt{2}\displaystyle\int^1_0\sin\pi t\mathrm{d}t=\cfrac{8\sqrt{2}}{\pi}. \end{aligned} 02[(x1)3+2x]1cos2nx dxx1=t 11(t3+2t+2)1cos2πt dt=4011cos2πt dt=42 01sinπtdt=π82 .
这道题主要利用了积分函数的对称性求解

(12) ∫ 0 + ∞ 1 ( x 2 + 1 ) ( 1 + x 5 ) d x ; \displaystyle\int^{+\infty}_0\cfrac{1}{(x^2+1)(1+x^5)}\mathrm{d}x; 0+(x2+1)(1+x5)1dx;

  记 I = ∫ 0 + ∞ 1 ( x 2 + 1 ) ( 1 + x 5 ) d x I=\displaystyle\int^{+\infty}_0\cfrac{1}{(x^2+1)(1+x^5)}\mathrm{d}x I=0+(x2+1)(1+x5)1dx,令 x = tan ⁡ t x=\tan t x=tant,则 I = ∫ 0 π 2 cos ⁡ 5 t cos ⁡ 5 t + sin ⁡ 5 t d t I=\displaystyle\int^{\frac{\pi}{2}}_0\cfrac{\cos^5t}{\cos^5t+\sin^5t}\mathrm{d}t I=02πcos5t+sin5tcos5tdt,又因 I = ∫ 0 π 2 cos ⁡ 5 t cos ⁡ 5 t + sin ⁡ 5 t d t = t = π 2 − u ∫ 0 π 2 sin ⁡ 5 t cos ⁡ 5 t + sin ⁡ 5 t d t I=\displaystyle\int^{\frac{\pi}{2}}_0\cfrac{\cos^5t}{\cos^5t+\sin^5t}\mathrm{d}t\xlongequal{t=\cfrac{\pi}{2}-u}\displaystyle\int^{\frac{\pi}{2}}_0\cfrac{\sin^5t}{\cos^5t+\sin^5t}\mathrm{d}t I=02πcos5t+sin5tcos5tdtt=2πu 02πcos5t+sin5tsin5tdt,两式相加,得 I = π 4 I=\cfrac{\pi}{4} I=4π。(这道题主要利用了换元积分法求解

(18) ∫ x + sin ⁡ x 1 + cos ⁡ x d x . \displaystyle\int\cfrac{x+\sin x}{1+\cos x}\mathrm{d}x. 1+cosxx+sinxdx.


∫ x + sin ⁡ x 1 + cos ⁡ x d x = ∫ x 1 + cos ⁡ x d x + ∫ sin ⁡ x 1 + cos ⁡ x d x = ∫ x 1 + cos ⁡ x d x + x sin ⁡ x 1 + cos ⁡ x − ∫ x d ( sin ⁡ x 1 + cos ⁡ x ) = ∫ x 1 + cos ⁡ x d x + x sin ⁡ x 1 + cos ⁡ x − ∫ x 1 + cos ⁡ x d x = x sin ⁡ x 1 + cos ⁡ x + C . \begin{aligned} \displaystyle\int\cfrac{x+\sin x}{1+\cos x}\mathrm{d}x&=\displaystyle\int\cfrac{x}{1+\cos x}\mathrm{d}x+\displaystyle\int\cfrac{\sin x}{1+\cos x}\mathrm{d}x\\ &=\displaystyle\int\cfrac{x}{1+\cos x}\mathrm{d}x+\cfrac{x\sin x}{1+\cos x}-\displaystyle\int x\mathrm{d}\left(\cfrac{\sin x}{1+\cos x}\right)\\ &=\displaystyle\int\cfrac{x}{1+\cos x}\mathrm{d}x+\cfrac{x\sin x}{1+\cos x}-\displaystyle\int\cfrac{x}{1+\cos x}\mathrm{d}x\\ &=\cfrac{x\sin x}{1+\cos x}+C. \end{aligned} 1+cosxx+sinxdx=1+cosxxdx+1+cosxsinxdx=1+cosxxdx+1+cosxxsinxxd(1+cosxsinx)=1+cosxxdx+1+cosxxsinx1+cosxxdx=1+cosxxsinx+C.
(这道题主要利用了分部积分法求解)

22.求 I = ∫ 0 ln ⁡ 2 x e x e x + 1 d x + ∫ ln ⁡ 2 ln ⁡ 3 x e x e x − 1 d x I=\displaystyle\int^{\ln2}_0\cfrac{xe^x}{e^x+1}\mathrm{d}x+\displaystyle\int^{\ln3}_{\ln2}\cfrac{xe^x}{e^x-1}\mathrm{d}x I=0ln2ex+1xexdx+ln2ln3ex1xexdx

  作变量代换: e x = u e^x=u ex=u,则 I = ∫ 1 2 ln ⁡ u u + 1 d u + ∫ 2 3 ln ⁡ u u − 1 d u I=\displaystyle\int^2_1\cfrac{\ln u}{u+1}\mathrm{d}u+\displaystyle\int^3_2\cfrac{\ln u}{u-1}\mathrm{d}u I=12u+1lnudu+23u1lnudu,对后一积分作代换: u − 1 = t u-1=t u1=t,再分部积分,有
I 2 = ∫ 2 3 ln ⁡ u u − 1 d u = ∫ 1 2 ln ⁡ ( t + 1 ) t d t = ln ⁡ t ln ⁡ ( t + 1 ) ∣ 1 2 − ∫ 1 2 ln ⁡ t t + 1 d t = ln ⁡ 2 ln ⁡ 3 − I 1 . \begin{aligned} I_2&=\displaystyle\int^3_2\cfrac{\ln u}{u-1}\mathrm{d}u=\displaystyle\int^2_1\cfrac{\ln(t+1)}{t}\mathrm{d}t\\ &=\ln t\ln(t+1)\biggm\vert^2_1-\displaystyle\int^2_1\cfrac{\ln t}{t+1}\mathrm{d}t\\ &=\ln2\ln3-I_1. \end{aligned} I2=23u1lnudu=12tln(t+1)dt=lntln(t+1)1212t+1lntdt=ln2ln3I1.
  所以 I = I 1 + I 2 = ln ⁡ 2 ln ⁡ 3 I=I_1+I_2=\ln2\ln3 I=I1+I2=ln2ln3。(这道题主要利用了分部积分法求解

C C C

1.设 a n = ∫ 0 1 x n 1 − x 2 d x , b n = ∫ 0 π 2 sin ⁡ n t d t a_n=\displaystyle\int^1_0x^n\sqrt{1-x^2}\mathrm{d}x,b_n=\displaystyle\int^{\frac{\pi}{2}}_0\sin^nt\mathrm{d}t an=01xn1x2 dx,bn=02πsinntdt,则极限 lim ⁡ n → ∞ n a n b n = \lim\limits_{n\to\infty}\cfrac{na_n}{b_n}= nlimbnnan=(  )
( A ) 1 ; (A)1; (A)1;
( B ) 0 ; (B)0; (B)0;
( C ) − 1 ; (C)-1; (C)1;
( D ) ∞ . (D)\infty. (D).


a n = ∫ 0 1 x n 1 − x 2 d x = x = sin ⁡ t ∫ 0 π 2 sin ⁡ n t ⋅ cos ⁡ 2 t d t = ∫ 0 π 2 sin ⁡ n t ( 1 − sin ⁡ 2 t ) d t = b n − b n + 2 . \begin{aligned} a_n&=\displaystyle\int^1_0x^n\sqrt{1-x^2}\mathrm{d}x\xlongequal{x=\sin t}\displaystyle\int^{\frac{\pi}{2}}_0\sin^nt\cdot\cos^2t\mathrm{d}t\\ &=\displaystyle\int^{\frac{\pi}{2}}_0\sin^nt(1-\sin^2t)\mathrm{d}t=b_n-b_{n+2}. \end{aligned} an=01xn1x2 dxx=sint 02πsinntcos2tdt=02πsinnt(1sin2t)dt=bnbn+2.
  又 b n + 2 = n + 1 n + 2 b n b_{n+2}=\cfrac{n+1}{n+2}b_n bn+2=n+2n+1bn,则 lim ⁡ n → ∞ n a n b n = lim ⁡ n → ∞ n ( 1 − n + 1 n + 2 ) = lim ⁡ n → ∞ n n + 2 = 1 \lim\limits_{n\to\infty}\cfrac{na_n}{b_n}=\lim\limits_{n\to\infty}n\left(1-\cfrac{n+1}{n+2}\right)=\lim\limits_{n\to\infty}\cfrac{n}{n+2}=1 nlimbnnan=nlimn(1n+2n+1)=nlimn+2n=1。故选 ( A ) (A) (A)。(这道题主要利用了递推公式求解

3.设 a n = 3 2 ∫ 0 n n + 1 x n − 1 1 + x n d x a_n=\cfrac{3}{2}\displaystyle\int^{\frac{n}{n+1}}_0x^{n-1}\sqrt{1+x^n}\mathrm{d}x an=230n+1nxn11+xn dx,则 lim ⁡ n → ∞ n a n = \lim\limits_{n\to\infty}na_n= nlimnan=______。


a n = 3 2 n ∫ 0 n n + 1 1 + x n d ( 1 + x n ) = 3 2 n ⋅ 2 3 ( 1 + x n ) 3 2 ∣ 0 n n + 1 = 1 n [ 1 + 1 ( 1 + 1 n ) n ] 3 2 − 1 n . \begin{aligned} a_n&=\cfrac{3}{2n}\displaystyle\int^{\frac{n}{n+1}}_0\sqrt{1+x^n}\mathrm{d}(1+x^n)\\ &=\cfrac{3}{2n}\cdot\cfrac{2}{3}(1+x^n)^{\frac{3}{2}}\biggm\vert^{\frac{n}{n+1}}_0=\cfrac{1}{n}\left[1+\cfrac{1}{\left(1+\cfrac{1}{n}\right)^n}\right]^{\frac{3}{2}}-\cfrac{1}{n}. \end{aligned} an=2n30n+1n1+xn d(1+xn)=2n332(1+xn)230n+1n=n11+(1+n1)n123n1.
  则 lim ⁡ n → ∞ n a n = lim ⁡ n → ∞ [ ( 1 + 1 ( 1 + 1 n ) n ) 3 2 − 1 ] = ( 1 + e − 1 ) 3 2 − 1 \lim\limits_{n\to\infty}na_n=\lim\limits_{n\to\infty}\left[\left(1+\cfrac{1}{\left(1+\cfrac{1}{n}\right)^n}\right)^{\frac{3}{2}}-1\right]=(1+e^{-1})^{\frac{3}{2}}-1 nlimnan=nlim1+(1+n1)n1231=(1+e1)231。(这道题主要利用了无穷小代换求解

5.设 f ( x ) f(x) f(x) x = 0 x=0 x=0处可导,又 g ( x ) = { x + 1 2 , x < 0 , sin ⁡ x 2 x , x > 0 , g(x)=\begin{cases}x+\cfrac{1}{2},&x<0,\\\cfrac{\sin\cfrac{x}{2}}{x},&x>0,\end{cases} g(x)=x+21,xsin2x,x<0,x>0, I = lim ⁡ x → 0 x f ( x ) ( 1 + x ) − x + 1 x + g ( x ) ∫ 0 2 x cos ⁡ t 2 d t x g ( x ) I=\lim\limits_{x\to0}\cfrac{xf(x)(1+x)^{-\frac{x+1}{x}}+g(x)\displaystyle\int^{2x}_0\cos t^2\mathrm{d}t}{xg(x)} I=x0limxg(x)xf(x)(1+x)xx+1+g(x)02xcost2dt

   I = lim ⁡ x → 0 [ f ( x ) g ( x ) ⋅ 1 ( 1 + x ) ( 1 + x ) 1 x + ∫ 0 2 x cos ⁡ t 2 d t x ] I=\lim\limits_{x\to0}\left[\cfrac{f(x)}{g(x)}\cdot\cfrac{1}{(1+x)(1+x)^{\frac{1}{x}}}+\cfrac{\displaystyle\int^{2x}_0\cos t^2\mathrm{d}t}{x}\right] I=x0limg(x)f(x)(1+x)(1+x)x11+x02xcost2dt,其中, lim ⁡ x → 0 − g ( x ) = lim ⁡ x → 0 − ( x + 1 2 ) = 1 2 , lim ⁡ x → 0 + g ( x ) = lim ⁡ x → 0 + sin ⁡ x 2 2 x 2 = 1 2 \lim\limits_{x\to0^-}g(x)=\lim\limits_{x\to0^-}\left(x+\cfrac{1}{2}\right)=\cfrac{1}{2},\lim\limits_{x\to0^+}g(x)=\lim\limits_{x\to0^+}\cfrac{\sin\cfrac{x}{2}}{2\cfrac{x}{2}}=\cfrac{1}{2} x0limg(x)=x0lim(x+21)=21,x0+limg(x)=x0+lim22xsin2x=21,故 lim ⁡ x → 0 g ( x ) = 1 2 \lim\limits_{x\to0}g(x)=\cfrac{1}{2} x0limg(x)=21,又 f ( x ) f(x) f(x) x = 0 x=0 x=0处可导,必连续,即 lim ⁡ x → 0 f ( x ) = f ( 0 ) \lim\limits_{x\to0}f(x)=f(0) x0limf(x)=f(0)。故 lim ⁡ x → 0 f ( x ) g ( x ) = lim ⁡ x → 0 f ( x ) lim ⁡ x → 0 g ( x ) = f ( 0 ) 1 2 = 2 f ( 0 ) \lim\limits_{x\to0}\cfrac{f(x)}{g(x)}=\cfrac{\lim\limits_{x\to0}f(x)}{\lim\limits_{x\to0}g(x)}=\cfrac{f(0)}{\cfrac{1}{2}}=2f(0) x0limg(x)f(x)=x0limg(x)x0limf(x)=21f(0)=2f(0)
  而 lim ⁡ x → 0 ( 1 + x ) ( 1 + x ) 1 x = e , lim ⁡ x → 0 ∫ 0 2 x cos ⁡ t 2 d t x = lim ⁡ x → 0 2 cos ⁡ ( 2 x ) 2 = 2 \lim\limits_{x\to0}(1+x)(1+x)^{\frac{1}{x}}=e,\lim\limits_{x\to0}\cfrac{\displaystyle\int^{2x}_0\cos t^2\mathrm{d}t}{x}=\lim\limits_{x\to0}2\cos(2x)^2=2 x0lim(1+x)(1+x)x1=e,x0limx02xcost2dt=x0lim2cos(2x)2=2,于是 I = lim ⁡ x → 0 x f ( x ) ( 1 + x ) − x + 1 x + g ( x ) ∫ 0 2 x cos ⁡ t 2 d t x g ( x ) = 2 e − 1 f ( 0 ) + 2 I=\lim\limits_{x\to0}\cfrac{xf(x)(1+x)^{-\frac{x+1}{x}}+g(x)\displaystyle\int^{2x}_0\cos t^2\mathrm{d}t}{xg(x)}=2e^{-1}f(0)+2 I=x0limxg(x)xf(x)(1+x)xx+1+g(x)02xcost2dt=2e1f(0)+2。(这道题主要利用了拆分分式求解

8.求 I n = ∫ − 1 1 ( x 2 − 1 ) n d x I_n=\displaystyle\int^1_{-1}(x^2-1)^n\mathrm{d}x In=11(x21)ndx

  由分部积分法可得
I n = x ( x 2 − 1 ) n ∣ − 1 1 − 2 n ∫ − 1 1 x 2 ( x 2 − 1 ) n − 1 d x = − 2 n ∫ − 1 1 ( x 2 − 1 ) n d x − 2 n ∫ − 1 1 ( x 2 − 1 ) n − 1 d x = − 2 n I n − 2 n I n − 1 . \begin{aligned} I_n&=x(x^2-1)^n\biggm\vert^1_{-1}-2n\displaystyle\int^1_{-1}x^2(x^2-1)^{n-1}\mathrm{d}x\\ &=-2n\displaystyle\int^1_{-1}(x^2-1)^n\mathrm{d}x-2n\displaystyle\int^1_{-1}(x^2-1)^{n-1}\mathrm{d}x\\ &=-2nI_n-2nI_{n-1}. \end{aligned} In=x(x21)n112n11x2(x21)n1dx=2n11(x21)ndx2n11(x21)n1dx=2nIn2nIn1.
  故 I n = − 2 n 2 n + 1 I n − 1 I_n=-\cfrac{2n}{2n+1}I_{n-1} In=2n+12nIn1
  递推得 I n − 1 = − 2 ( n − 1 ) 2 n − 1 I n − 2 , I n − 2 = − 2 ( n − 2 ) 2 n − 3 I n − 3 , ⋯   , I 2 = − 4 5 I 1 I_{n-1}=-\cfrac{2(n-1)}{2n-1}I_{n-2},I_{n-2}=-\cfrac{2(n-2)}{2n-3}I_{n-3},\cdots,I_2=-\cfrac{4}{5}I_1 In1=2n12(n1)In2,In2=2n32(n2)In3,,I2=54I1,又 I 1 = ∫ − 1 1 ( x 2 − 1 ) d x = − 4 3 I_1=\displaystyle\int^1_{-1}(x^2-1)\mathrm{d}x=-\cfrac{4}{3} I1=11(x21)dx=34,所以 I n = ( − 1 ) n 2 2 n + 1 ( n ! ) 2 ( 2 n + 1 ) ! I_n=(-1)^n\cfrac{2^{2n+1}(n!)^2}{(2n+1)!} In=(1)n(2n+1)!22n+1(n!)2。(这道题主要利用了递推公式求解

9.求 ∫ e − 2 n π 1 ∣ [ cos ⁡ ( ln ⁡ 1 x ) ] ′ ∣ ln ⁡ 1 x d x \displaystyle\int^1_{e^{-2n\pi}}\left|\left[\cos\left(\ln\cfrac{1}{x}\right)\right]'\right|\ln\cfrac{1}{x}\mathrm{d}x e2nπ1[cos(lnx1)]lnx1dx

  令 ln ⁡ 1 x = t \ln\cfrac{1}{x}=t lnx1=t,则 x = e − t , d x = − e − t d t x=e^{-t},\mathrm{d}x=-e^{-t}\mathrm{d}t x=et,dx=etdt
∫ e − 2 n π 1 ∣ [ cos ⁡ ( ln ⁡ 1 x ) ] ′ ∣ ln ⁡ 1 x d x = ∫ 0 2 n π ∣ d ( cos ⁡ t ) d t ⋅ d t d x ∣ t e − t d t = ∫ 0 2 n π ∣ e t ⋅ sin ⁡ t ∣ t e − t d t = ∫ 0 2 n π ∣ sin ⁡ t ∣ t d t = ∑ k = 1 2 n ∫ ( k − 1 ) π k π ( − 1 ) k − 1 t sin ⁡ t d t = ∑ k = 1 2 n ( − 1 ) k − 1 ( − t cos ⁡ t + sin ⁡ t ) ∣ ( k − 1 ) π k π = ∑ k = 1 2 n ( − 1 ) k − 1 [ − k π ( − 1 ) k + ( k − 1 ) π ( − 1 ) k − 1 ] = ∑ k = 1 2 n ( 2 k − 1 ) π = 4 n 2 π . \begin{aligned} \displaystyle\int^1_{e^{-2n\pi}}\left|\left[\cos\left(\ln\cfrac{1}{x}\right)\right]'\right|\ln\cfrac{1}{x}\mathrm{d}x&=\displaystyle\int^{2n\pi}_0\left|\cfrac{\mathrm{d}(\cos t)}{\mathrm{d}t}\cdot\cfrac{\mathrm{d}t}{\mathrm{d}x}\right|te^{-t}\mathrm{d}t=\displaystyle\int^{2n\pi}_0|e^t\cdot\sin t|te^{-t}\mathrm{d}t\\ &=\displaystyle\int^{2n\pi}_0|\sin t|t\mathrm{d}t=\sum\limits_{k=1}^{2n}\displaystyle\int^{k\pi}_{(k-1)\pi}(-1)^{k-1}t\sin t\mathrm{d}t\\ &=\sum\limits_{k=1}^{2n}(-1)^{k-1}(-t\cos t+\sin t)\biggm\vert^{k\pi}_{(k-1)\pi}\\ &=\sum\limits_{k=1}^{2n}(-1)^{k-1}[-k\pi(-1)^k+(k-1)\pi(-1)^{k-1}]\\ &=\sum\limits_{k=1}^{2n}(2k-1)\pi=4n^2\pi. \end{aligned} e2nπ1[cos(lnx1)]lnx1dx=02nπdtd(cost)dxdttetdt=02nπetsinttetdt=02nπsinttdt=k=12n(k1)πkπ(1)k1tsintdt=k=12n(1)k1(tcost+sint)(k1)πkπ=k=12n(1)k1[kπ(1)k+(k1)π(1)k1]=k=12n(2k1)π=4n2π.
这道题主要利用了分段函数求解

13.求反常积分 ∫ 0 1 x b − x a ln ⁡ x d x ( a , b > 0 ) \displaystyle\int^1_0\cfrac{x^b-x^a}{\ln x}\mathrm{d}x(a,b>0) 01lnxxbxadx(a,b>0)

  化为二次积分并交换积分次序,有
∫ 0 1 x b − x a ln ⁡ x d x = ∫ 0 1 ( ∫ a b x y d y ) d x = ∫ b a ( ∫ 0 1 x y d x ) d y = ∫ a b 1 y + 1 d y = ln ⁡ b + 1 a + 1 . \begin{aligned} \displaystyle\int^1_0\cfrac{x^b-x^a}{\ln x}\mathrm{d}x&=\displaystyle\int^1_0\left(\displaystyle\int^b_ax^y\mathrm{d}y\right)\mathrm{d}x=\displaystyle\int^a_b\left(\displaystyle\int^1_0x^y\mathrm{d}x\right)\mathrm{d}y\\ &=\displaystyle\int^b_a\cfrac{1}{y+1}\mathrm{d}y=\ln\cfrac{b+1}{a+1}. \end{aligned} 01lnxxbxadx=01(abxydy)dx=ba(01xydx)dy=aby+11dy=lna+1b+1.
这道题主要利用了换序积分求解

14.求反常积分 ∫ 0 + ∞ 1 ( 1 + x 2 ) ( 1 + x α ) d x ( α ≠ 0 ) \displaystyle\int^{+\infty}_0\cfrac{1}{(1+x^2)(1+x^\alpha)}\mathrm{d}x(\alpha\ne0) 0+(1+x2)(1+xα)1dx(α=0)

  令 x = 1 t x=\cfrac{1}{t} x=t1,则
∫ 0 + ∞ 1 ( 1 + x 2 ) ( 1 + x α ) d x = ∫ 0 + ∞ t α ( 1 + t 2 ) ( 1 + t α ) d t = ∫ 0 + ∞ x α ( 1 + x 2 ) ( 1 + x α ) d x = 1 2 ∫ 0 + ∞ 1 + x α ( 1 + x 2 ) ( 1 + x α ) d x = 1 2 ∫ 0 + ∞ 1 1 + x 2 d x = 1 2 arctan ⁡ x ∣ 0 + ∞ = π 4 . \begin{aligned} \displaystyle\int^{+\infty}_0\cfrac{1}{(1+x^2)(1+x^\alpha)}\mathrm{d}x&=\displaystyle\int^{+\infty}_0\cfrac{t^\alpha}{(1+t^2)(1+t^\alpha)}\mathrm{d}t=\displaystyle\int^{+\infty}_0\cfrac{x^\alpha}{(1+x^2)(1+x^\alpha)}\mathrm{d}x\\ &=\cfrac{1}{2}\displaystyle\int^{+\infty}_0\cfrac{1+x^\alpha}{(1+x^2)(1+x^\alpha)}\mathrm{d}x=\cfrac{1}{2}\displaystyle\int^{+\infty}_0\cfrac{1}{1+x^2}\mathrm{d}x\\ &=\cfrac{1}{2}\arctan x\biggm\vert^{+\infty}_0=\cfrac{\pi}{4}. \end{aligned} 0+(1+x2)(1+xα)1dx=0+(1+t2)(1+tα)tαdt=0+(1+x2)(1+xα)xαdx=210+(1+x2)(1+xα)1+xαdx=210+1+x21dx=21arctanx0+=4π.
这道题主要利用了换元积分法求解

写在最后

  如果觉得文章不错就点个赞吧。另外,如果有不同的观点,欢迎留言或私信。
   欢迎非商业转载,转载请注明出处。

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值